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Abstract

Some notes on the Yoneda Lemma, starting with the notion of
representable functors.

Covariant Representable Functors

We first define a prototype of a covariant representable functor out of a
locally small category A .

Definition. Let A be a locally small category, and fix A ∈ A . Define the
functor HA = A (A,−) : A → Set by the following mapping on

1. objects: For B ∈ A , define HA(B) = A (A,B), the hom-set of arrows
in A from A to B.

2. morphisms: For g : B → B′, define HA(g) = A (A, g) : A (A,B) →
A (A,B′) by p 7→ g ◦ p for all p : A → B, sending morphisms from A
to B to morphisms from A to B′ by post-composition with g.

From this prototype of a representable functor, we can now define co-
variant representable functors:

Definition (Covariant Representable Functor). Let A be a locally small
category. A functor X : A → Set is representable if X is naturally isomor-
phic to HA for some A ∈ A . A representation of X is a choice of an object
A along with a natural isomorphism from HA to X.

Some examples of representable functors:

Example 1 (group G regarded as a one object category). Regarding a group
G as a one object category G , with object ∗, H∗ = ∗(∗,−) : G → Set is a
functor which maps
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1. objects: There is only one object in G , and H∗(∗) is the set of map-
pings from ∗ to ∗, otherwise known as the elements of the group G.
So H∗(∗) ∼= U(G) where U : Grp → Set is the forgetful functor that
returns the underlying set of a group.

2. morphisms: Let g ∈ G, then H∗(g) maps any element h of G to g◦h,
which, interpreted in the context of a group is just group mulitiplica-
tion on the left, i.e. gh.

Since G has only one object, there is only one representable functor on
it (up to isomorphism), and the representable is the underlying set G acted
on by left multiplication.

Example 2 (H1 : Set→ Set). Let 1 denote the set with just one element.
The functor 1Set is represented by the functor H1 : Set→ Set. To see this,
let us first see what H1 does and then show that it is naturally isomorphic
to 1Set.

Let B ∈ Set, then H1(B) = Set(1, B) = {b : 1→ B} the set of functions
from the singleton set to B that pick out an element of B. In particular,
H1(B) ∼= B. Let p : 1 → B and g : B → B′, then H1(g) = Set(1, g) :
Set(1, B) → Set(1, B′) sends functions p that pick out an element of B to
functions g ◦ p that pick out an element of B′.

So we have the parallel functors H1, 1Set : Set → Set and we know
what they do. Now we construct a natural isomorphism t : H1 ⇒ 1Set. We
already have that H1(B) ∼= B, so the components of t are the isomorphisms
tB : H1(B) → B (and of course t−1B : B → H1(B)). Now we need to check
that the naturality square below commutes:

H1(B) H1(B′)

B B′

//H1(g)

//
1Set(g) = g

��

tB

��

tB′

where g : B → B′.
It is enough to consider an element b : 1 → B from H1(B). b picks out

an element of B, which we will also identify by b(1) = b. Going down from
H1(B), tB(b : 1 → B) gives us this element b, which is then sent by g to
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some element of B′, say b′. On the other hand, going right from H1(B),
H1(g)(b : 1→ B) = g ◦ b which gives us the map b′ : 1→ B′ that picks out
g(b(1)) = b′. Finally, tB′(b′) is precisely this element b′ of B′. So in fact the
naturality square commutes.

Hence 1Set is represented by H1.

Example 3 (H1 : Cat → Set). Similarly to the example above, ob :
Cat→ Set which sends a small category to its underlying set of objects is
represented by H1 where 1 is the one-object category. This is because when
B is a category, H1(B) = Cat(1,B) which picks out objects of B and is
isomorphic to obB. The proof that these functors are naturally isomorphic
is essentially the same as the one for 1Set and H1 in the example above.

Adjoints and Representables

Now we establish the claim that any set valued functor with a left adjoint
is representable. We first prove the following lemma.

Lemma 1. Let A ,B be locally small categories with functors F : A →
B, G : B → A such that F a G. Fix A ∈ A , then the functor

A (A,G(−)) : B → Set

that is, the composition B
G→ A

HA

→ Set is representable.

Proof. Because F a G, we have the isomorphism t−1A,B : A (A,G(B)) →
B(F (A), B) for each B ∈ B. Now HF (A) maps B to B(F (A), B), and it
maps a morphism g : B → B′ to B(F (A), g) : B(F (A), B)→ B(F (A), B′).
So we suspect that the isomorphisms t−1A,B gives rise to the natural isomor-

phism t−1 : A (A,G(−))⇒ HF (A). We show that this is in fact the case.
We need to check naturality. Let g : B → B′. We need to check that

the following naturality square commutes:

A (A,G(B)) A (A,G(B′))

B(F (A), B) B(F (A), B′)

//
A (A,Gg) = HA(Gg)

��

t−1A,B

��

t−1A,B′

//

HF (A)(g)
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It suffices to consider a map f : A→ G(B) from A (A,G(B)) as it travels
around the diagram. Going down from A (A,G(B)), t−1A,B(f : A → G(B))

is a map t−1A,B(f) : F (A)→ B, and then HF (A)(g)(t−1A,B) = g ◦ t−1A,B which is
a map from F (A) to B′. On the other hand, going right from A (A,G(B)),
HA(Gg)(f : A → G(B)) = Gg ◦ f which is a map from A to G(B′) and
then t−1A,B′(Gg ◦ f) is a map from F (A) to B′. So the question is whether

t−1A,B′(Gg ◦ f) = g ◦ t−1A,B(f), but that is precisely what it means for t−1 to be

natural with respect to B (See [Liu18a]), so in fact A (A,G(−)) ∼= HF (A)

and is therefore representable.

Now we are ready to prove the main claim of this subsection:

Theorem 1. Any set-valued functor that has a left adjoint is representable.

Proof. Let G : A → Set be a functor with left adjoint F . Let 1 denote the
set with a single element. For all A ∈ A , G(A) is a set and by example 2
above, H1(G(A)) = Set(1, G(A)) ∼= G(A) naturally in A where H1 is our
functor from Set to Set in example 2 above. So G ∼= Set(1, G(−)) and by
the lemma above, this means G is representable.

Covariant Embedding

Proposition 1. Let f : A′ → A, then f induces a natural transformation
Hf : HA ⇒ HA′

with components Hf
B : HA(B) → HA′

(B) so that a map
p : A→ B in HA(B) gets mapped via precomposition with f to p ◦ f : A′ →
B.

Proof. We need to show that this map Hf is indeed a natural transforma-
tion. Let g : B → B′. This means checking that the naturality square:

HA(B) HA(B′)

HA′
(B) HA′

(B′)

//
HA(g)

��

Hf
B

��

Hf
B′

//

HA′
(g)

commutes.
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It is sufficient to consider a map p : A → B in HA(B) as it travels

around the square. Going down, we have first Hf
B(p) = p ◦ f , and then to

the right we have HA′
(g)(p ◦ f) = g ◦ (p ◦ f). Going to the right we have

HA(g)(p) = g ◦ p, and then going down we have Hf
B′(g ◦ p) = (g ◦ p) ◦ f .

However, since morphism composition is associative, these two things are
equal and so the square indeed commutes.

With this natural transformation between covariant representables, we
have the following definition:

Definition. The covariant embedding is the functor H• : A op → [A ,Set]
defined by the following mapping on:

1. objects: For object A in A , H•(A) = HA.

2. morphisms: For morphism f : A′ → A, H•(f) = Hf .

We can do many of the same things with the dual case.

Contravariant Representable Functors

Again, we start with a definition of the prototypical contravariant repre-
sentable functor:

Definition. Let A be a locally small category with object A. Define the
functor HA : A (−, A) : A op → Set by the following mapping on

1. objects: For object B in A , define HA(B) = A (B,A).

2. morphisms: For morphism g : B′ → B, define HA(g) = A (g,A) :
A (B,A)→ A (B′, A) by p : B → A 7→ p ◦ g : B′ → B → A.

Similar to the covariant case, any functor F : A op → Set that is nat-
urally isomorphic to a prototypical contravariant representable functor is
called contravariantly representable.

Example 4. The functor P : Setop → Set which maps sets to their pow-
ersets and maps functions g : B′ → B to P(g) = g−1U for all U ∈ P(B)
where g−1U = {x′ ∈ B′|g(x′) ∈ U} is naturally isomorphic to H2 : Setop →
Set where 2 denotes the set with two elements.

To show this, we first need to realize that a subset of a set B is just a
boolean mapping from the set to 2 (f(b) = 1 means b is in that subset).
So H2(B) = Set(B, 2) ∼= P(B). Define tB : H2(B) → P(B) with this
isomorphism. We show that the tB’s are natural in B and therefore define
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the components of a natural transformation t : H2 ⇒P. Let B,B′ be sets,
and let g be a map from B′ to B. To do this, we show that the following
naturality square commutes:

H2(B) H2(B
′)

P(B) P(B′)
��

tB

//
H2(g)

��

tB′

//

P(g)

Consider a map u : B → 2 that picks out an associated subset U ⊆ B.
tB(u) gives precisely this subset U , and P(g)(U) gives the subset U ′ of B′

that maps along g into U . On the other hand, H2(g)(u) precomposes g with
u to give the mapping u ◦ g : B′ → B → 2 which picks out the subset U ′ of
B′ that, when mapped along g gives back U . And t′B(u ◦ g) gives this U ′.
So the diagram commutes.

Hence, P is represented by H2.

Contravariant Embedding

Similar to the covariant case, the map f : A → A′ induces a natural trans-
formation Hf : HA ⇒ HA′ with components HB

f : HA(B) → HA′(B) such
that a map p : B → A 7→ f ◦ p : B → A→ A′.

This gives rise to the following contravariant embedding (which we will
call the Yoneda Embedding)

Definition (Yoneda Embedding). Let A be a locally small category. The
Yoneda Embedding is the functor H• : A → [A op,Set] defined by the
following mapping on:

1. objects: For object A in A , H•(A) = HA.

2. morphisms: For morphism f : A→ A′, H•(f) = Hf .

Proposition 2. H• is injective on isomorphism classes of objects.

Proof. Let A,A′ be objects in A such that HA
∼= HA′ . We need to show

A ∼= A′, that is, find maps f : A→ A′, g : A′ → A that are mutually inverse.
Since HA

∼= HA′ that means there are maps (natural transformations) α :
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HA ⇒ HA′ and β : HA′ ⇒ HA such that α ◦ β = 1HA′ and β ◦ α = 1HA
. We

need to use α and β to construct the f and g we need.
First let’s consider the components of α. Let B be an object in A .

Then αB is a map from HA(B) → HA′(B). Letting B = A, we have
αA : HA(A) → HA′(A). Now, we don’t know what morphisms there are in
HA(A), but we certainly know that 1A exists. And applying αA to 1A, we
get a map αA(1A) : A→ A′.

Similarly, considering βA′ applied to (1A′), we get a map βA′(1A′) : A′ →
A.

So now we have our maps between A and A′. We need to show that they
are mutually inverse.

Naturality of α in B means that for every p : B → B′ the following
naturality square holds (note the contravariance):

HA(B) HA(B′)

HA′(B) HA′(B′)
��

αB

oo
− ◦ p

��

αB′

oo
− ◦ p

In particular, if x : B′ → A is a map HA(B′), then αB(x◦p) = αB′(x)◦p.
Again, what we need is a specialization of this general phenomenon.

Letting x = 1A, which means making B = A′ and B′ = A, our p becomes a
map from A′ → A and by naturality above we have αA′(1A◦p) = αA(1A)◦p.
Now p is a map from A′ → A, so letting p = βA′(1A′) we have that αA(1A)◦
βA′(1A′) = αA′(1A ◦ βA′(1A′)) = αA′(βA′(1A′)). But since αA′ and βA′ are
mutually inverse, this just means αA(1A)◦βA′(1A′) = 1A′ , which is precisely
what we wanted.

Similarly, we can show using the naturality of β and specializing to 1A′

that βA′(1A′) ◦ αA(1A) = 1A.
Thus A ∼= A′.

The Yoneda Lemma

Theorem 2 (The Yoneda Lemma). Let A be a locally small category. Then
[A op,Set](HA, X) ∼= X(A) naturally in A ∈ A and X ∈ [A op,Set].

Proof. First let’s give a quick outline of the proof:
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1. Produce a mapping tA,X : [A op,Set](HA, X)→ XA.

2. Produce a mapping t−1A,X : XA→ [A op,Set](HA, X).

3. Show that t, t−1 are mutually inverse.

4. Show that t is natural in A.

5. Show that t is natural in X.

We’re not going to do these steps in order, instead we’ll do these steps
the way I did it when I came up with the proof, so you’ll see my motivation
for each successive step.

Let’s begin with step 1. Let α : HA ⇒ X be a natural transformation.
Looking at α’s components, αB : HA(B)→ XB sends a map g : B → A to
the element of XB, αB(g). tA,X needs to map α to one specific element of
XA. Consider the special case where B = A. Then we have the component
αA : HA(A) → XA. Since the only map we are certain exists in HA(A) is
the identity map 1A, this suggests we need to define tA,X(α) = αA(1A).

To check that this mapping is the correct one, let’s first check that tA,X

is natural in X. Let F : X ⇒ X ′ be a natural transformation. tA,X natural
in X means that the following naturality square holds:

[A op,Set](HA, X) [A op,Set](HA, X
′)

XA X ′A

//
F ◦ −

��

tA,X

��

tA,X′

//

FA

Let α : HA ⇒ X be a natural transformation. Then going down first
and then to the right via FA we have FA(tA,X(α)) = FA(αA(1A)). On the
other hand going right first via F ◦− and then down we have tA,X′(F ◦α) =
(F ◦ α)A(1A). And by compositionality, (F ◦ α)A(1A) = FA ◦ αA(1A) =
FA(αA(1A)). So tA,X is indeed natural in X.

Now let us check that tA,X is natural in A. We won’t succeed yet but
this will give us a hint as to how we should define t−1A,X . Let f be a map from
A to A′. We need to check that the following naturality square commutes:
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[A op,Set](HA, X) [A op,Set](HA′ , X)

XA XA′

oo
− ◦Hf

��

tA,X

��

tA′,X

oo

Xf

Let α′ : HA′ ⇒ X be a natural transformation. Then going down first
and then left via Xf we have Xf(tA′,X(α′)) = Xf(α′A′(1A′)). On the other
hand, going to the left first via−◦Hf and then down, we have tA,X(α′◦Hf ) =
(α′A ◦ HA

f )(1A) = α′A(f) (Because HA
f (1A) = f ◦ 1A) = f . So we need to

have the equality

Xf(α′A′(1A′)) = α′A(f)

Which we can’t prove just yet. However, this does give us a hint as to
how we should define t−1A,X . Notice that α′A′(1′A) is an element of XA′ and
that for every g : B → A′ ∈ HA′(B), g 7→ Xg(α′A′(1′A)) defines a mapping
from HA′(B) to XB, which is beginning to look like the components of a
natural transformation HA′ ⇒ X.

With that let us define our mapping t−1A,X : XA → [A op,Set](HA, X).

Let x be an element of XA. We define t−1A,X(x) = (X(f : B → A)(x))B∈A .
So for each B, we have a family of morphisms HA(B) → XB given by
f 7→ Xf(x). Now we need to check that this family of morphisms does
indeed form a natural transformation HA ⇒ X.

Let k : B → B′. We need to check that the following naturality square
commutes:

HA(B) HA(B′)

XB XB′

oo
− ◦ k

��

X(− : B → A)(x)

��

X(−′ : B′ → A)(x)

oo

Xk
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Let p : B′ → A. Then going left and down we first have p ◦ k : B → A
which then becomes X(p ◦ k)(x). On the other hand, going down first
and then left we have Xk(Xp(x)). These expressions are equal by the
(co)functoriality of X. So t−1A,X(x) does indeed yield a natural transfor-
mation.

Now we need to check that tA,X and t−1A,X are in fact mutually inverse.

Let x ∈ XA. Then tA,X(t−1A,X(x)) = tA,X(X(−)(x)) = (X(−)(x))A(1A) =

X1A(x) = 1XA(x) = x. So tA,X ◦ t−1A,X does indeed equal 1XA. The other
direction is a little bit harder:

Let α be a natural transformation from HA ⇒ X. t−1A,X(tA,X(α)) =

t−1A,X(αA(1A)) = X(−)(αA(1A)). Let f : B → A. For X(−)(αA(1A)) = α,
we need to have Xf(αA(1A)) = αB(f) for every f . The only tool we have
at our disposal is naturality, either naturality of X(−)(x) which we just
established, or the naturality of α. When I first went about trying to prove
this I thought we ought to use the naturality of X(−)(x), however it turns
out that the correct thing to do is use the naturality of α. (Thank you
[Lei14]!) Let’s write out the naturality square for α with f :

HA(B) HA(A)

XB XA

oo
− ◦ f

��

αB

��

αA

oo

Xf

Considering the image of 1A as it moves around the square, we have
αB(1A ◦ f) = αB(f) = Xf(αA(1A)), which is exactly what we needed.

So t and t−1 are mutually inverse, and in fact this last step is also what
we needed to prove that tA,X is natural in A, so we are done.

Consequences of the Yoneda Lemma

One consequence of the Yoneda Lemma is that it justifies the name of the
Yoneda Embedding, in that the Yoneda Embedding embeds A into a full
subcategory of its presheaf category:

Proposition 3. The Yoneda Embedding: H• : A → [A op,Set] is full and
faithful.



11

Proof. H• being full and faithful is another way of saying the map K :
A (A,A′) → [A op,Set](H•(A), H•(A

′)) is bijective for all A,A′ ∈ A . First
recall that H•(A) = HA, H•(A

′) = HA′ and that A (A,A′) = HA′(A). So
K is actually a map from HA′(A)→ [A op,Set](HA, HA′). Remember that
K comes from the Yoneda Embedding, which means K takes a morphism
f : A→ A′ and maps it to Hf : HA → HA′ .

Well, by the Yoneda Lemma, we know there is a bijection t−1A,HA′ :

HA′(A) → [A op,Set](HA, HA′). If K and t−1A,HA′ were actually the same,

then that would show that K is bijective. Let’s consider what t−1A,HA′ actually

does. Let f : A→ A′. Then f ∈ HA′(A) and t−1A,HA′ (f) = HA′(g)(f) = f ◦ g
for all g : B → A. So t−1A,HA′ (f) is post-composition with f , which is exactly

what Hf does, so K and t−1A,HA′ are in fact the same.

Another consequence of the Yoneda Lemma is that isomorphic objects
have isomorphic representables:

Proposition 4. HA
∼= HA′ if and only if A ∼= A′.

Proof. We have already shown that HA
∼= HA′ implies A ∼= A′ (See Propo-

sition 2). Now suppose A ∼= A′. Then since the embedding A (A,A′) →
[A op,Set](HA, HA′) is full and faithful (by Proposition 3), that means
H•(A) ∼= H•(A

′), which means HA
∼= HA′ .

Let’s look at some examples of this:

Example 5. Suppose we are in the category of groups, and that for two
particular groups A,A′, we know that for all B (though not necessarily
naturally in B), HA(B) ∼= HA′(B). What can we say about A,A′? Let’s
substitute some groups for B and see what happens:

1. B = 1. Then we have that Grp(1, A) ∼= Grp(1, A′). But the only
group homomorphisms ϕ : 1 → A and ϕ′ : 1 → A′ are the ones
sending 1 to the identity. So this simply says the set comprising the
identity in A is isomorphic to the set comprising the identity in A′,
which is not very interesting.

2. B = Z. Then since a group homomorphism ϕ : Z → A that sends
1 to an element a ∈ A picks out the cyclic subgroup of A generated
by a, the set of group homomorphisms from Z to A picks out the
underlying set of A (it acts like the forgetful functor U : Grp →
Set). So HA(Z) ∼= HA′(Z) means the underlying sets of A and A′ are
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isomorphic. However, this stops short of saying the group structures
of A and A′ are the same.

However, if we knew that this isomorphism of representables was natural
in B, then we would be able to say that the groups were isomorphic.

Example 6. The category of sets is different, since a set A is isomorphic
to the set of all functions from 1 to A, if we have Set(1, A) = HA(1) ∼=
HA′(1) = Set(1, A′), then we automatically know that A ∼= A′.

Looking at tensor products now, it makes sense to talk about the tensor
product of two vector spaces:

Example 7. In [Liu18b], we showed that the functor Bilin(U, V ;−) is repre-
sented by the functor Vect(T,−) : Vect→ Set where T is a tensor product
of U, V . So if we have Vect(T,−) ∼= Vect(T ′,−), that means T ∼= T ′, and
the tensor product of U, V is unique up to isomorphism.

In a similar way, it makes sense to talk about the left adjoint of a certain
functor, since they are unique up to isomorphism:

Example 8. Suppose G : B → A is a functor and that F, F ′ : A → B are
both left adjoint to G. Then by the definition of adjoint functors, for each
A ∈ A , we have

B(FA,B) ∼= A (A,GB) ∼= B(F ′A,B)

naturally in B, which means HFA ∼= HF ′A. And by Proposition 4, we
have FA ∼= F ′A, but since this is natural in A, this means F ∼= F ′.
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