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Abstract

Magnitude is a numerical invariant of metric spaces with origins in
the notion of the Euler characteristic of a category. To this day the only
convex sets in Euclidean space for which we can compute magnitude
are the odd-dimensional Euclidean balls. Recent results have shed
light on the asymptotic behavior of the magnitude function for these
Euclidean balls, and in particular recent work by Meckes showed that
the first order small-t asymptotics of the magnitude function recovers
its first intrinsic volume. The aim of this thesis is to survey work done
to understand the magnitude function for odd-dimensional Euclidean
balls and to compute its second order small-t asymptotics.
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1 Introduction

Magnitude is a numerical invariant of metric spaces. Its precursor is the
Euler characteristic of a finite category, introduced by Leinster in [Lei06] as
an analog to the classical notion of the Euler characteristic of a topological
space. In [Lei11], Leinster extended his definition of the Euler characteristic
of a finite category to finite enriched categories. An enriched category C
is one where the hom-sets of any two objects in C are replaced by objects
of some monoidal category V . Lawvere in [Law73] observed that categories
enriched in ([0,∞],0,≤) can be seen as generalized metric spaces where
for any two objects a, b, the hom-set Hom(a, b) ∈ [0,∞] gives the distance
between a, b satisfying the triangle identity. This notion of distance is more
general than in a classical metric space because distances are allowed to
be infinite and may no longer be symmetric. Taking the definition of the
Euler characteristic of a finite category enriched in [0,∞] we arrive at the
definition of magnitude for a finite metric space. A precise definition of
magnitude for a finite metric space will be given in chapter 2.

Soon after defining magnitude for finite metric spaces, Leinster and oth-
ers considered the question of defining magnitude for infinite metric spaces
(defined in chapter 3). Willerton in [Wil09] computed the magnitudes of
some infinite sets via approximation by finite subsets, though at this point
it was not clear whether such computations were independent of the ap-
proximations chosen. Meckes in [Mec13] showed that defining magnitude
for infinite metric spaces via approximations by finite subsets is indeed con-
sistent for a special class of metric spaces: the compact positive definite
metric spaces. In addition, Meckes showed that one can arrive at an equiv-
alent definition that extends to compact metric spaces (see [Mec15] and
[LM17]).

However, at the time of this writing, there are only a few spaces for
which magnitude is known exactly. Among them include:

1. Compact intervals in R ([LM17]),

2. n-spheres with the intrinsic metric ([Wil14]),

3. Compact `1-convex sets in `n1 ([LM17]),

4. odd-dimensional Euclidean balls ([BC16] and [Wil17]).

Leinster and Willerton in [LW13] conjectured that magnitude is a val-
uation on convex bodies. By computing the magnitude functions of odd-
dimensional Euclidean balls in dimensions 3, 5, and 7, Barcelo and Carbery
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showed in [BC16] that this convex magnitude conjecture is false, however,
recent work by Willerton, Gimperlein and Goffeng, and Meckes in [Wil17],
[GG17], and [Mec19] respectively showed evidence for various asymptotic
versions of the convex magnitude conjecture.

The goal of this thesis is to survey these results and to extend work
by Meckes in [Mec19] to investigate the second order small-t asymptotics
of the magnitude function for odd-dimensional Euclidean balls. Chapters
2 and 3 introduces the theory of magnitude for finite and infinite metric
spaces respectively. Chapter 4 surveys results regarding the magnitude of
odd-dimensional Euclidean balls. Chapter 5 and 6 are devoted to com-
puting the second order small-t asymptotics of the magnitude function for
odd-dimensional Euclidean balls, reducing the computation to a counting
problem that has been partially solved.

2 Finite metric spaces

We begin by introducing the theory of magnitude for finite metric spaces.
See [Lei11] for a more comprehensive introduction.

2.1 The magnitude of a finite metric space

We start with the notion of the magnitude of a matrix. Let M ∈ Mn(R).
The vector w ∈ Rn is called a weighting if Mw = 1n, the vector of all 1’s.
Similarly, v ∈ Rn is called a coweighting if v⋆M = 1⋆n. The following lemma
ensures that if a matrix M admits both a weighting and a coweighting,
then the sum of all the entries of the (co)weighting is independent of the
(co)weighting chosen:

Lemma 2.1. If M has a weighting w and a coweighting v, then
n

∑
j=1

wj =
n

∑
j=1

vj .

Proof.
n

∑
j=1

wj = 1⋆nw = v⋆Mw = v⋆1n =
n

∑
j=1

vj .

The lemma allows us to define the magnitude of a matrix. Let M ∈
Mn(R). If M has a weighting w and a coweighting v, then we say M has
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magnitude and its magnitude is given by

∣M ∣ =
n

∑
j=1

wj =
n

∑
j=1

vj .

It is not obvious how to find the weighting of a matrix (if it exists at
all), but the situation is more straightforward if the matrix is invertible:

Lemma 2.2. If M ∈ Mn is invertible, then it has a unique weighting and

coweighting and ∣M ∣ =
n

∑
i,j=1

[M−1]ij

Proof. If M is invertible, then the equations

Mx = 1n, x⋆M = 1⋆n

have unique solutions which give the weighting and coweighting of M re-
spectively. In particular, the weighting w is given by

w =M−11n =
n

∑
j=1

a−1j

where a−1j is the j-th column of M−1. Then the magnitude of M is given by

n

∑
j=1

wj =
n

∑
i=1

n

∑
j=1

a−1j (i) =
n

∑
i,j=1

[M−1]ij

where a−1j (i) denotes the i-th entry of a−1j .

Now that we have the matrix preliminaries established we can move on
to the definition of the magnitude of a finite metric space. Let A be a finite
metric space with n points and distance function d. Then the similarity
matrix ZA is the n × n real matrix given by [ZA]ij = e−d(i,j) where i, j ∈ A.
The magnitude of A is the magnitude of its similarity matrix, assuming it
has a defined magnitude. We also denote the magnitude of A by ∣A∣.

We now present some basic examples of metric spaces and their magni-
tudes:

Example 2.3. 1. Let A be the discrete metric space, that is, d(a, b) =∞
for all a ≠ b in A. Then the similarity matrix ZA is the identity matrix
and so ∣A∣ = #A where #A is the number of points in A.
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2. Let A be the metric space of two points a, b and let d = d(a, b). Then
we have the similarity matrix

ZA = [ 1 e−d

e−d 1
]

which is invertible with inverse matrix given by

Z−1
A =

⎡⎢⎢⎢⎢⎣

1
1−e−2d

−e−d

1−e−2d
−e−d

1−e−2d
1

1−e−2d

⎤⎥⎥⎥⎥⎦

and so A has magnitude

∣A∣ = 2(1 − e−d)
1 − e−2d

= 2(1 − e−d)
(1 + e−d)(1 − e−d)

= 2

1 + e−d
= 1 + tanh(d

2
).

2.2 The magnitude function

Given a finite metric space A, we have a one parameter family of matrices
tA where the distances in A are scaled by a real parameter t > 0. Then we
call the assignment t ↦ ∣tA∣ the magnitude function of A. Note that the
metric space tA does not necessarily admit a weighting for all values of t, so
the magnitude function is a partially defined function from (0,∞)→ R.

Note that as we scale up distances between points, the metric space
A “approaches” the discrete space and so we want to be able to say that
∣tA∣→#A as t→∞. Actually proving this statement is a little more tricky
than it first seems because, as noted above, ∣tA∣ is not necessarily defined
for all t. To do this, we prove the following lemma and proposition. The
lemma and proposition, along with their proofs, can be found in [Lei11] as
Lemma 2.2.5 and Proposition 2.2.6.

A metric space A is an expansion of a metric space B if there exists a
distance-decreasing surjection from A to B, that is, there exists an f ∶ A→ B
surjective such that for all a, b ∈ A, dB(f(a), f(b)) ≤ dA(a, b).

Lemma 2.4 (Lemma 2.2.5 of [Lei11]). Suppose A,B are both finite metric
spaces with nonnegative weightings (that is, the entries of their respective
weightings are nonnegative). Then if A is an expansion of B, then ∣A∣ ≥ ∣B∣.

Proof. Since A is an expansion of B, there exists a distance decreasing sur-
jection f ∶ A → B. Take a right-inverse function of f , say g ∶ B → A (which
we know exists since f is surjective). Then for all b ∈ B, f(g(b)) = b and so
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for all a ∈ A and b ∈ B, we have

dB(f(a), b) = dB(f(a), f(g(b))) ≤ dA(a, g(b))

this also means
[ZB]f(a),b ≥ [ZA]a,g(b)

(note the reversal of the direction in the inequality). Now let wA,wB be
respective nonnegative weightings. In what follows, we’ll use functional
notation wA(i) to denote the i-th entry of wA an similarly for wB. Then by
nonnegativity of the weighting and the inequality above, we have

∣A∣ = ∑
a∈A

wA(a) ⋅ 1 = ∑
a∈A,b∈B

wA(a) [ZB]f(a),bwB(b)

≥ ∑
a∈A,b∈B

wA(a) [ZA]a,g(b)wB(b) = ∑
b∈B

1 ⋅wB(b) = ∣B∣

as required.

Proposition 2.5 (Proposition 2.2.6 of [Lei11]). Let A be a finite metric
space. Then

(i) tA is invertible and hence has magnitude for all but finitely many t > 0.

(ii) The magnitude function of A is analytic at all t > 0 such that tA is
invertible.

(iii) for t≫ 0, there is a unique, positive, weighting on tA.

(iv) For t≫ 0, the magnitude function of A is increasing.

(v) ∣tA∣→#A as t→∞.

Proof. Let #A = n. For an n × n invertible matrix M , by Lemma 2.2, the
unique weighting w on M is given by

wi =
n

∑
j=1

[M−1]
ij
. (1)

We can rewrite (1) in terms of the adjugate and the determinant of M :

wi =
n

∑
j=1

[M−1]
ij
=

n

∑
j=1

[adj(M)]ij
detM

(2)
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where Madj(M) = (detM)In. Note that the adjugate is a smooth function
of M (see section 0.8 of [HJ13]).

To show (i), note that since ZtA → In as t → ∞ and In is invertible,
ZtA is invertible for large enough t. Also note that detZtA is analytic in t.
One way to see this is by looking at the Liebniz formula for the determinant
found in [HJ13] applied to our definition of the similarity matrix:

detZtA =∑
σ

sgn(σ)∏
a∈A

[ZtA]a,σ(a) =∑
σ

sgn(σ)∏
a∈A

e−td(a,σ(a))

where σ is a permutation of n elements. From the formula above, clearly the
determinant is analytic in t (it is the sum and product of analytic functions).
Then since ZtA → In as t →∞ and det In = 1, detZtA > 0 for large enough
t, and so by analyticity, detZtA has finitely many zeroes for t ∈ (0,∞).

For (ii), since magnitude is the sum of all the entries in the weighting,
analyticity of the magnitude function for all t > 0 such that tA is invertible
follows from Equation (2) and analyticity of the quotient.

For (iii), fix a ∈ A and note that by Equation (2), the function ZtA ↦
wtA(a) is continuous on the space of n × n invertible matrices (where wtA
denotes the weighting on ZtA). Now, wIn(a) = 1, so by continuity since ZtA
converges to In as t → ∞, the weighting wtA(a) is also positive for large
enough t. In other words, ZtA has a positive weighting for large enough t.

To show (iv), let t ≤ t′. Note that by part (iii), tA and t′A have positive
weightings for large enough t. Note also that t′A is an expansion of tA
(taking the function f ∶ tA → t′A to be the identity as a map of sets as our
distance decreasing surjection). So applying Lemma 2.4 above, we see that
the magnitude function is increasing for t≫ 0.

Finally for (v), by everything above, we have that lim
t→∞

∣tA∣ = ∣ lim
t→∞

ZtA∣ =
∣In∣ = n = #A.

So for any finite metric space A, the value of the magnitude function
approaches the cardinality of A as we blow up distances between points.
However, along with the fact that the magnitude may not be defined every-
where, other “nice” properties that we might expect, such as monotonicity
or non-negativitiy, are not guaranteed for the magnitude function, as the
following example shows:

Example 2.6. Let K3,2 be the graph with vertices a1, a2, a3 and b1, b2 and
one edge between ai and bj for each i and j. Let each edge have length t.
The distance function on K3,2 is the shortest path distance in the graph (see
Figure 1).
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●a1

●a2

●a3

●b1

●b2

t

Figure 1: The graph K3,2.

Then for each t, we can compute the similarity matrix and the magni-
tude:

ZtK3,2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 e−2t e−2t e−t e−t

e−2t 1 e−2t e−t e−t

e−2t e−2t 1 e−t e−t

e−t e−t e−t 1 e−2t

e−t e−t e−t e−2t 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣tK3,2∣ =
5 − 7e−t

(1 + e−t)(1 − 2e−2t)

The graph of the magnitude function for K3,2 shows how pathological the
magnitude function of a metric space can be (see Figure 2). In particular,

1. it is undefined for t = log
√

2,

2. there are values for which it is negative,

3. it is not monotonic,

4. and finally it can exceed the cardinality of K3,2.

2.3 Finite positive definite metric spaces

Given the example above, it is natural to ask whether there are classes of
finite metric spaces for which the magnitude function is more well-behaved.
The metric spaces with positive definite similarity matrix are one such class.
We say a finite metric space A is positive definite if its similarity matrix
ZA is a positive definite matrix. Since positive definite matrices are in-
vertible, any positive definite metric space has magnitude. Likewise, since
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Figure 2: The magnitude function of K3,2.

prinicipal submatrices of positive definite matrices are positive definite, sub-
spaces of positive definite metric spaces are positive definite and hence also
have magnitude.

The main attractiveness of positive definite metric spaces is that mag-
nitude is guaranteed to be defined, and we have a more convenient explicit
formula for the magnitude:

Proposition 2.7 (Proposition 2.4.3 of [Lei11]). If A is a positive definite
metric space, then A has magnitude and

∣A∣ = sup
v≠0

(∑a∈A va)
2

v⋆ZAv

where v ∈ R#A. The supremum if and only if v is a nonzero scalar multiple
of the unique weighting on A.

Proof. Since ZA, we have the Cauchy-Schwarz inequality:

(v⋆ZAw)2 ≤ (v⋆ZAv)(w⋆ZAw)

with equality if and only if v,w are scalar multiples of each other. We take
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w to be the unique weighting on ZA. Then we have

∣A∣ = ∑
a∈A

wa = w⋆ZAw ≥ (v⋆ZAw)2

v⋆ZAv
= (∑a∈A va)

2

v⋆ZAv

for all v. So ∣A∣ is greater than or equal to the supremum. But taking w to
be the unique weighting gives

(∑a∈Awa)
2

w⋆ZAw
= (w⋆ZAw)2

w⋆ZAw
= w⋆ZAw = ∑

a∈A

wa = ∣A∣

so we have equality.

Using this formulation of the magnitude, we can show some that mag-
nitude is increasing with respect to inclusion for positive definite metric
spaces.

Proposition 2.8 (Lemma 2.4.10 of [Lei11]). If A is a positive definite metric
space and B ⊆ A, then ∣B∣ ≤ ∣A∣.

Proof. As mentioned above, since A is positive definite and B is a subspace
of A, B is also positive definite and so has magnitude. Then we have

∣B∣ = sup
v≠0

(∑b∈B vb)2

v⋆ZBv
≤ sup
v≠0

(∑a∈A va)2

v⋆ZAv
= ∣A∣

since the space of vectors we are considering for B is a subset of the space
of vectors we consider for A (after embedding R#B into R#A).

Finite subsets of n-dimensional Euclidean space are positive definite and
hence have magnitude. Indeed, finite subsets of several well-known spaces
are known to be positive definite and so have magnitude. A more complete
list of such spaces is given in the next section below where we will be able
to say that compact subspaces have magnitude.

3 Infinite metric spaces

Now we move on to the theory of magnitude for more general classes of met-
ric spaces. A strategy that naturally arises for generalizing magnitude for
finite spaces to infinte spaces would be to approximate infinite metric spaces
by finite subspaces. However, there is a question of whether magnitude for
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infinite metric spaces defined in this way is independent of the approximat-
ing sequence chosen. Meckes in [Mec13] defined magnitude for the class of
compact positive definite metric spaces and showed that this definition for
magnitude is indeed consistent. We briefly survey these results (without
proofs) in the section below. A more comprehensive survey can be found in
[LM17].

3.1 Compact positive definite metric spaces

Let A be a metric space. We say A is a positive definite metric space
if every finite subspace of A is positive definite. The property that tA is a
positive definite metric space for all t > 0, is equivalent to the property that
A is of negative type. Several well-known metric spaces are of negative
type, and we will later see that they have well-defined magnitudes.

We first need to have a topology on the class of compact metric spaces
in order to do any kind of approximation. Let X be a metric space. Then
the Hausdorff metric dH on the class of compact subsets A,B is given by

dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b,A)}

where d is the distance function on X. By considering embeddings of com-
pact metric spaces into ambient spaces, we have a notion of distances be-
tween two metric spaces: the Gromov-Hausdorff distance between two
compact metric spaces A,B is given by

dGH(A,B) = inf dH(ϕ(A), ψ(B))

where the infimum is over all metric spaces X and isometric embeddings
ϕ ∶ A→X and ψ ∶ B →X.

The following proposition allows us to define the magnitude of a compact
positive definite metric space via approximations by finite positive definite
spaces:

Proposition 3.1 (Proposition 3.1 of [LM17]). The quantity

M(A) = sup{∣A′∣ ∶ A′ ⊆ A,A′ finite}

is a lower semicontinuous function of A (taking values in [0,∞]) in the
class of compact positive definite metric spaces equipped with the Gromov-
Hausdorff topology.
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Let A be a compact positive definite metric space. We can therefore
define the magnitude of a compact positive definite metric space ∣A∣
to be the value of M(A). Semicontinuity and Proposition 2.8 ensures that
if A is finite, then M(A) = ∣A∣, so this new definition agrees with magnitude
for the finite case. Furthermore, the magnitude of A is independent of the
choice of approximating sequence of finite subsets:

Proposition 3.2 (Proposition 3.3 of [LM17]). Let A be a compact positive
definie metric space, and let {Ak} be any sequence of compact subsets of A
such that Ak → A in the Hausdorff topology. Then ∣A∣ = lim

k→∞
∣Ak∣.

Recall that A is of negative type if tA is positive definite for all t > 0.
Then by above all compact subsets ofA have a well-defined (possibly infinite)
magnitude. In particular, the following spaces are known to be of negative
type and hence their compact, as well as finite, subsets have magnitude
(Theorem 2.11 of [LM17] and Theorem 3.6 of [Mec13]):

1. `np for n ≥ 1 and 1 ≤ p ≤ 2,

2. Lp[0,1] for 1 ≤ p ≤ 2,

3. n-spheres with the geodesic distance,

4. weighted trees.

Willerton in [Wil14] gives an explicit formula for the magnitude of n-
spheres with the intrinsic metric.

4 Odd-dimensional Euclidean balls

We now briefly survey, without proofs, results regarding the magnitude and
magnitude function of sets in Euclidean space, ultimately specializing to
odd-dimensional Euclidean balls. These results hinge on the formulation of
magnitude in terms of potential theory and capacities of sets Meckes intro-
duced in [Mec15] in defining magnitude for general compact metric spaces.
We begin with a statement of the erstwhile convex magnitude conjecture,
as it motivates many of the results in this section.

Let d = 2m + 1 where m is a natural number. Denote by Bd
2 the d-

dimensional closed Euclidean ball and tBd
2 the d-dimensional ball with radius

t for t > 0.
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4.1 The convex magnitude conjecture

Let Kn be the space of compact convex sets in Rn. We call a nonempty set
in Kn a convex body. A valuation is a function P ∶ Kn → R that satisfies
the inclusion-exclusion principle, that is:

● P (∅) = 0,

● P (A ∪B) = P (A) + P (B) − P (A ∩B)

whenever A,B,A ∪B ∈ Kn (A ∩B is automatically in Kn whenever A and
B are). Hadwiger’s Theorem states that if a valuation P is invariant under
rigid motions and is continuous with respect to the Hausdorff metric, then
there are canonical valuations V0, V1, . . . , Vn that are homogenous of degree
i such that P can be written as a linear combination of these valuations.
The valuations Vi are called the i-th intrinsic volumes with Vn being the
usual n-dimensional volume, Vn−1 being half the surface area and V0 being
the Euler characteristic. See [Sch14] for more on Hadwiger’s Theorem and
convex bodies in general.

Computer calculations of the magnitudes of various sets in Euclidean
space found in [Wil09] led to the following conjecture stated in [LW13]:

Conjecture (Leinster-Willerton). Let K ∈ Kn. Then magnitude is a valu-
ation and moreover

∣K ∣ =∑
i≥0

Vi(K)
i!ωi

where Vi is the i-th intrinsic volume and ωi is the volume of the unit ball in
Ri.

By homogeneity of the intrinsic volumes, the conjecture is equivalent to

Mag(tK) =∑
i≥0

Vi(K)
i!ωi

ti.

That is, the magnitude function of a convex body is a polynomial in t with
coefficients proportional to the intrinsic volumes of K.
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4.2 Asymptotic results

Barcelo and Carbery in [BC16] explicitly calculated the magnitude functions
of Euclidean balls in dimensions 3,5, and 7:

Mag(tB3
2) =

t3

3!
+ t2 + 2t + 1

Mag(tB5
2) =

t6 + 18t5 + 135t4 + 525t3 + 1080t2 + 1080t + 360

5!(t + 3)

Mag(tB7
2) =

t7

7!

+
1

180 t
9 + 2

15 t
8 + 3

2 t
7 + 31

3 t
6 + 189

4 t
5 + 145t4 + 1165

4 t3 + 360t2 + 240t + 60

t3 + 12t2 + 48t + 60

(3)

In particular, the magnitude function of B5
2 provides an example of where

the convex magnitude conjecture is false, since it is a rational function of t.
However, recent results have shown that some intrinsic volumes still appear
in the asymptotic expansions of the magnitude function as we take t → ∞
and t→ 0 separately, though with not necessarily the same scalar multiples
as predicted by the convex magnitude conjecture. In [BC16], Barcelo and
Carbery established the top-order asymptotics of the magnitude function
for both t→∞ and t→ 0 in the following theorem:

Theorem 4.1 (Theorem 1 of [BC16]). Let K be a nonempty compact set
in Rn. Then

Mag(tK)→ 1 as t→ 0

and

t−nMag(tK)→ Vol(K)
n!ωn

as t→∞

In particular, the theorem says the first and last coefficients of the mag-
nitude function were correctly predicted by the convex magnitude conjecture
as we take t→∞ and t→ 0 respectively.

However, the other terms in the asymptotic expansion of the magnitude
function for t → ∞ do not agree with the convex magnitude conjecture.
Building on work by Willerton in [Wil17], Gimperlein and Goffeng in [GG17]
showed the following theorem.

Theorem 4.2 (Theorem 2(c)-(d) of [GG17]). Let d ≥ 3 be odd and let K be
a d-dimensional convex body with nonempty interior and smooth boundary.
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Then

Mag(tK) = 1

d!ωd
(Vd(K)td + (d + 1)Vd−1(K)td−1 + π

4
(d + 1)2Vd−2(K)td−2)

+O(td−3)

as t→∞.

That is, we can recover the next two intrinsic volumes, but with corrected
coefficients, from the magnitude function of convex smooth Euclidean do-
mains in odd-dimension. It turns out, however, that the next term in the
asymptotic expansion above is not a multiple of an intrinsic volume [Mec19].

As for higher order terms in the small-t asymptotics, Meckes in [Mec19]
showed the following result for odd-dimensional Euclidean balls:

Theorem 4.3 (Theorem 4 of [Mec19]). Let Bd
2 be the d-dimensional unit

Euclidean ball where d = 2m + 1 is odd and

V1 (Bd
2) =

(2m + 1)
√
πΓ(m + 1)

Γ (m + 3
2
)

= 2(m − 1
2

m
)
−1

is its first intrinsic volume. Then

d

dt
Mag(tBd

2)∣t=0 =
1

2
V1(Bd

2).

This coefficient does agree with the coefficient predicted by the convex
magnitude conjecture. So the conjecture correctly predicts the first-order
behavior of the magnitude function as t → 0. The question of whether the
conjecture correctly predicts second-order behavior for small t is the subject
of this thesis.

Theorems 4.2, 4.3, and the rest of this thesis depend on work done by
Willerton in [Wil17] to give an expression for the magnitude function of
odd-dimensional Euclidean balls in terms of collections of Schröder paths.
Schröder paths and the result by Willerton are introduced in the section
below.

4.3 Schröder paths

Definition 4.4. ● A Schröder path is a finite directed path in the
integer lattice in which each step (x, y) ∈ Z2 is either an ascent to
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(x + 1, y + 1), a descent (x + 1, y − 1) or a flat step (x + 2, y) (note
the advance by two spaces in the horizontal direction).

● Fix k ≥ 0. A disjoint k-collection is a family of Schröder paths from
(−i, i) to (i, i) for each 0 ≤ i ≤ k such that no node in Z2 is contained
in two of the paths (the paths are disjoint).

● We denote by Xk the set of all disjoint k-collections and by Xj
k the set

of disjoint k-collections with exactly j flat steps.

When thinking about what kinds of disjoint k-collections we can have in
Xj
k for some fixed j, it is often useful to think about what a path needs to

look like for increasing values of i. For example, consider the set X0
k , that

is, the set of disjoint k-collections with exactly 0 flat steps. At i = 0 we have
the single dot at (0,0) and at i = 1, since we are allowed no flat steps, the
only possible path we can have is the path made up of one ascent followed
immediately by one descent. Then for i = 2, the disjointness condition
and the presence of the earlier path at height i = 1 ensures that the only
possible path we can have is the path made up of two ascents followed by
two descents. We continue this argument for successive values of i. We
will call the path at height i consisting of i ascents followed by i descents a
V-path at height i (because they look like upside down V’s). So it turns
out that X0

k consists only of one collection, denoted σkroof, which is made up
entirely of V-paths for each 0 ≤ i ≤ k.

Let σ be a disjoint k-collection in Xk. For each path in σ we associate a
weighting to each step τ in the path by the following:

ωj(τ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if τ is an ascent,

t if τ is a flat step,

y + 1 − j if τ is a descent from height y to height y − 1.

For a collection σ ∈ Xk the (total) weight of σ, denoted by ωj(σ) is the
product of all the weightings of each step of a path in σ, that is,

ωj(σ) =∏
τ∈σ

ωj(τ)

Note that if σ ∈ X`
k, that is σ has exactly ` flat steps, then ωj(σ) will take

the form ct` where c is the product of all the weights on descents in σ. We
will only use the weightings ω0 and ω2 for our purposes, that is, a descent
starting at height y will be weighted by either y + 1 and y − 1 respectively.
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Figure 3: The disjoint 3-collection σ3roof with ω2 weightings.

Consider a V-path σ at height i, then we have

ω0(σ) =
(2i + 1)!
(i + 1)!

ω2(σ) =
(2i − 1)!
(i − 1)!

and since σkroof consists only of V-paths, we have

ω0 (σkroof) =
k

∏
i=0

(2i + 1)!
(i + 1)!

ω2 (σkroof) =
k

∏
i=1

(2i − 1)!
(i − 1)!

We are interested in these weightings on collections of Schröder paths
because Willerton in [Wil17] showed the following:

Theorem 4.5 (Corollary 27 of [Wil17]). Let d = 2m + 1 be odd. Then

Mag (tBd
2) =

∑
σ∈Xm+1

ω2(σ)

d! ∑
σ∈Xm−1

ω0(σ)
=

∑
σ∈Xm+1

∏
τ∈σ

ω2(τ)

d! ∑
σ∈Xm−1

∏
τ∈σ

ω0(τ)

for all t > 0.

As mentioned before, ωj(σ) are of the form ct` where ` is the number of
flat steps in σ and c is a constant, so the numerator and the denominator in
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the expression above are both polynomials in t. We will denote the function
in the numerator by N(t) and the function in the denominator (without the
extra d!) by D(t). Put more succinctly, we have

Mag (tBd
2) =

N(t)
d!D(t)

.

5 The problem

Taking second derivatives and evaluating at t = 0 for each magnitude func-
tion in (3), we have

d2

dt2
Mag(tB3

2)∣t=0 = 2

d2

dt2
Mag(tB5

2)∣t=0 =
38

9
= 4.222 . . .

d2

dt2
Mag(tB7

2)∣t=0 =
162

25
= 6.48

(4)

The rest of this thesis is devoted to computing the value of

d2

dt2
Mag(tBd

2)∣t=0. (5)

for odd d.
The convex magnitude conjecture predicts that (5) is given by

1

2ω2
V2 (Bd

2) =
1

2π
V2 (Bd

2) .

By Theorem 9.2.4 of [KR97], we have that

V2 (Bd
2) = (d

2
) ωd
ωd−2

= (d
2
)π

Γ (d
2
)

Γ (d
2 + 1)

= (d
2
)2π

d
.

So the convex magnitude conjecture predicts that

d2

dt2
Mag(tBd

2)∣t=0 =
1

2π
V2 (Bd

2) =
1

d
(d
2
) = 1

2
(d − 1). (6)

To compute the value of (5), we will follow the same general approach
that Meckes used to prove Theorem 4.3 in [Mec19]. An outline is presented
below:
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1. Apply the quotient rule to Theorem 4.5 and the result of Theorem 4.3
to express the second derivative in terms of N(t),D(t).

2. The expression will contain first and second derivatives of N(t) and
D(t) evaluated at t = 0. First consider disjoint k-collections containing
exactly one flat step to simplify terms containing first derivatives.

3. Consider disjoint k-collections containing exactly two flat steps to sim-
plify terms containing second derivatives. Since this step is more in-
volved, we put it in its own section below.

4. Combine the previous two steps to arrive at an (partial) answer.

5.1 Evaluating the second derivative

From now on, when writing down the value of a function evaluated at zero,
for convenience we will omit the “(0)” part, that is, we write N for N(0)
and N ′ for N ′(0) and similarly for D(0) and D′(0). For higher derivatives
we divide by the order of the derivative, that is, we denote 1

2N
′′(0) by N ′′

and 1
2D

′′(0) by D′′. The point of this is that N ′′ and D′′ are the values of
the coefficients of the second order terms in N(t) and D(t) respectively. In
Theorem 28 of [Wil17], Willerton showed the following identity

N = d!D

and Meckes in the proof of Theorem 4 of [Mec19] showed that

N ′D −ND′ = 1

2
V1 (Bd

2)d!D2.

In the rest of the paper below, we will use V1 as shorthand for V1 (Bd
2). Now

we evaluate
d2

dt2
Mag(tBd

2)∣t=0.
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Applying the quotient rule and using the two identities above, we have

d2

dt2
Mag(tBd

2)∣t=0 =
d

dt
( d
dt

Mag(tBd
2)) ∣

t=0

= d

dt
( d
dt

N(t)
d!D(t)

) ∣
t=0

= d

dt
(d!D(t)N ′(t) −N(t)d!D′(t)

d!2D(t)2
) ∣
t=0

= d

dt
(D(t)N ′(t) −N(t)D′(t)

d!D(t)2
) ∣
t=0

= d!D(t)2[D(t)N ′′(t) −N(t)D′′(t)] − [D(t)N ′(t) −N(t)D′(t)]d!2D(t)D′(t)
d!2D(t)4

∣
t=0

= D(t)[D(t)N ′′(t) −N(t)D′′(t)] − [D(t)N ′(t) −N(t)D′(t)]2D′(t)
d!D(t)3

∣
t=0

= D(t)2N ′′(t) −D(t)N(t)D′′(t) − 2D′(t)D(t)N ′(t) + 2D′(t)2N(t)
d!D(t)3

∣
t=0

= 2D2N ′′ − 2DD′N ′ − 2DND′′ + 2ND′2

d!D3

= 2D2N ′′ − 2DND′′ − 2D′(DN ′ −D′N)
d!D3

=
2D2N ′′ − 2DND′′ − 2D′(12V1d!D2)

d!D3

= 2 [DN
′′ −ND′′

d!D2
] − V1 [

D′

D
]

= 2 [DN
′′ − d!DD′′

d!D2
] − V1 [

D′

D
]

= 2 [N
′′ − d!D′′

d!D
] − V1 [

D′

D
]

= 2 [N
′′ − d!D′′

N
] − V1 [

D′

D
] .

Where the factors of 2 in front of the terms containing a second derivative
are because of the factor of 1

2 that we introduced earlier in our notation for
N ′′ and D′′. To continue simplifying this expression, we have to give explicit
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expressions for the terms involved:

N = ∑
σ∈X0

m+1

∏
τ∈σ

ω2(τ) = ∏
τ∈σm+1

roof

ω2(τ), (7)

D = ∑
σ∈X0

m−1

∏
τ∈σ

ω0(τ) = ∏
τ∈σm−1

roof

ω0(τ), (8)

N ′ = t−1 ∑
σ∈X1

m+1

∏
τ∈σ

ω2(τ), (9)

D′ = t−1 ∑
σ∈X1

m−1

∏
τ∈σ

ω0(τ), (10)

N ′′ = t−2 ∑
σ∈X2

m+1

∏
τ∈σ

ω2(τ), (11)

D′′ = t−2 ∑
σ∈X2

m−1

∏
τ∈σ

ω0(τ). (12)

This boils down to a counting problem to do with disjoint collections of
Schröder paths with exactly k flat steps for k = 0,1,2.

5.2 Simplifying the D′

D Term

By (8) and (10) we have,

D = ∏
τ∈σm−1

roof

ω0(τ) =
m−1

∏
k=0

(2k + 1)!
(k + 1)!

and
D′ = t−1 ∑

σ∈X1
m−1

∏
τ∈σ

ω0(τ),

so we want to count how many disjoint (m − 1)-collections σ have exactly
one flat step in them.

Suppose we have a disjoint k-collection containing exactly one flat step.
Let σ be the path in this collection containing the single flat step at height,
say, p. By the same reasoning as when discussing X0

k earlier, the paths at
height less than p must be V-paths. But then the disjointness condition
ensures that σ at height p must have the flat step be centered, so σ is a path
consisting of p−1 ascents, one flat step and then p−1 descents. We will call
such a path a flat step path at height p. Note that the weightings for
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this kind of path are given by

ω0(σ) =
(2p)!

(p + 1)!
,

ω2(σ) =
(2p − 1)!
(p − 1)!

.

For the path directly above σ, we can either have a V-path as before or,
because of the extra space provided by the flat step just below we can have
a path consisting of p ascents, one descent, one ascent and then p descents.
Then for the next path above, the disjointness condition ensures that this
path can only be either a path of a similar form or a V-path. We will call
the path at height k consisting of k − 1 ascents, one descent, one ascent and
then k descents a M-path at height k. So in σ, after the flat step path at
height p we will have some number of M-paths followed by some number of
V-paths. Note that after we have switched to V-paths we cannot have any
other paths above because of the disjointness condition. This allows us to
characterize all the disjoint (m − 1)-collections in X1

m−1: fix 1 ≤ p ≤ m − 1
and 0 ≤ q ≤ m − 1 − p, then the disjoint (m − 1)-collection σm−1p,q from the
bottom up, is composed of p − 1 V-paths, followed by a flat step path at
height p, followed by q M-paths, followed by V-paths up to height m − 1.
Then Meckes in [Mec19] observed that

X1
m−1 = ⋃

1≤p≤m−1
0≤q≤m−1−p

σm−1p,q .

Let σ be a M-path at height k, then we have

ω0(σ) =
(2k)!(2k)
(k + 1)!

,

ω2(σ) =
(2k − 1)!(2k − 1)

(k − 1)!

where the extra factor on the numerator comes from the additional descent
we have in σ. The ω2 weighting will become relevant later on when we
evaluate N .

Since we can recognize X1
m−1 as a union of disjoint (m − 1)-collections

with this specific form, we can write down an explicit expression for D′:

D′ = ∑
1≤p≤m−1

0≤q≤m−1−p

(
p−1

∏
k=0

(2k + 1)!
(k + 1)!

)( (2p)!
(p + 1)!

)
⎛
⎝

p+q

∏
k=p+1

(2k)!(2k)
(k + 1)!

⎞
⎠
⎛
⎝

m−1

∏
k=p+q+1

(2k + 1)!
(k + 1)!

⎞
⎠
.
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Figure 4: A disjoint 3-collection containing a flat step at height 1 and an
M-path at height 2 with ω2 weightings.

We can simplify the quotient D′/D: For each summand depending on
p, q in the quotient D′/D, we have

p−1

∏
k=0

1
(k+1)!

1
p!

p+q

∏
k=p+1

1
(k+1)!

m−1

∏
k=p+q+1

1
(k+1)!

p−1

∏
k=0

(2k + 1)!(2p)!
p+q

∏
k=p+1

(2k)!(2k)
m−1

∏
k=p+q+1

(2k + 1)!

m−1

∏
k=0

1
(k+1)!

m−1

∏
k=0

(2k + 1)!
.

We can cancel the product of all the 1
(k+1)! ’s since on the top we also have

a product of 1
(k+1)! ’s from 0 up to m − 1. This gives us

p−1

∏
k=0

(2k + 1)!(2p)!
p+q

∏
k=p+1

(2k)!(2k)
m−1

∏
k=p+q+1

(2k + 1)!

m−1

∏
k=0

(2k + 1)!
.

We can further cancel all the (2k+1)!’s from k = 0 to p−1 and from p+q+1
to m − 1:

(2p)!
p+q

∏
k=p+1

(2k)!(2k)

p+q

∏
k=p

(2k + 1)!
=

(2p)!
p+q

∏
k=p+1

(2k)!(2k)

(2p + 1)!
p+q

∏
k=p+1

(2k + 1)!

= 1

2p + 1

⎛
⎝

p+q

∏
k=p+1

2k

2k + 1

⎞
⎠
.



6 DISJOINT K-COLLECTIONS WITH TWO FLAT STEPS 25

So summing over all such p and q we have

D′

D
= ∑

1≤p≤m−1
0≤q≤m−1−p

1

2p + 1

p+q

∏
k=p+1

( 2k

2k + 1
) . (13)

6 Disjoint k-collections with two flat steps

Recall for N ′′ and D′′ (equations (11) and (12) above) we are considering
paths in disjoint k-collections from either X2

m+1 or X2
m−1. So our next step

is to describe all disjoint k-collections containing exactly two flat steps. We
can already rule out the possibility where a disjoint k-collection has two flat
steps on the same path. This is because any path below the one with the
flat steps needs to be a V-path and there’s then not enough room on the
path with the flat step for a flat step to appear anywhere other than the
center. This then also tells us that for any disjoint k-collection with two flat
steps, the two flat steps will be on separate paths and moreover the first flat
step will be centered.

As before, after the first flat step we can have some number of M-paths
followed by some number of V-paths. If we have a nonzero amount of V-
paths, then that means the second path with a flat step in it will have its flat
step centered. On the other hand, if we only have M-paths above the first
flat step path, then we have enough room for the second path containing a
flat step to have its flat step offset by one either to the left or right, that
is, either a path starting at height k with (k − 2) ascents, followed by a flat
step, one more ascent and then (k−1) descents, or a path starting at height
k with (k − 1) ascents, one descent, a flat step and then (k − 2) descents.
Notice that by symmetry, a path with flat step offset to the left has same
total weight as a path with flat step offset to the right, and moreover that
both have a total weight equal to the total weight of a regular flat step
path at the same height. For this reason, in the future when discussing the
total weight, we will use the term “flat step path” to refer to both types
of paths. Suppose we have a left-offset flat step path at height p, then on
the path at height p + 1 we have enough space to have a left asymmetric
M-path consisting of (p+1−2) ascents, followed by one descent, 2 ascents,
and then (p + 1 − 1) descents. More generally, a (left) asymmetric M-path
at height k consists of (k − 2) ascents, one descent, two ascents and then
(k − 1) descents. Above this first left asymmetric M-path we can have more
asymmetric M-paths or regular M-paths or V-paths.

Suppose we have an left asymmetric M-path σ at height k, then the
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product of the weights on this path is given by

ω2(σ) =
(2k − 2)!
(k − 1)!

(2k − 3).

Notice that by symmetry, a right asymmetric M-path (corresponding to the
case where the second flat step is off-set to the right) will have the same
product of weights. This means that a disjoint k-collection of where the
second flat step is offset to the left followed by left asymmetric M-paths
will have the same total weighting as the disjoint k-collection yielded by
reflecting across the y-axis. For this reason, we will only need to consider
the left offset case.

To summarize, we have two cases of disjoint k-collections containing
exactly two flat steps:

(a) Two centred flat steps: We have two centered flat step paths at height
p1 and p2 respectively. Above the first flat step path we have q1 M-
paths and above the second flat step path we have q2 M-paths. V-paths
fill in all the rest. We will denote these kinds of disjoint k-collections
by σkp1,p2,q1,q2 .

(b) Second flat step is offset: We have one centered flat step path at
height p1 and an offset flat step path at height p2. In between p1 and
p2 we have only M-paths. Above the second flat step path we have q1
asymmetric M-paths followed by q2 M-paths. V-paths fill in the top
and the bottom. We will denote disjoint k-collections of this form by
Lkp1,p2,q1,q2 for a left offset and Rkp1,p2,q1,q2 for a right offset (though as
remarked above, we will only need to consider the left offset case).

So we have that

X2
k = ⋃

p1,p2,q1,q2

σkp1,p2,q1,q2 ∪ ⋃
p1,p2,q1,q2

Lkp1,p2,q1,q2 ∪ ⋃
p1,p2,q1,q2

Rkp1,p2,q1,q2 .

6.1 µ Simplification of the N ′′
− d!D′′ Term

Recall that for N ′′ and D′′ we have:

N ′′ = t−2 ∑
σ∈X2

m+1

∏
τ∈σ

ω2(τ), D′′ = t−2 ∑
σ∈X2

m−1

∏
τ∈σ

ω0(τ),

so in N ′′ we are considering disjoint (m+1)-collections with exactly two flat
steps while in D′′ we are considering disjoint (m − 1)-collections. In order
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Figure 5: A disjoint 3-collection containing two flat steps (one off-centered)
and an asymmetric M-path with ω2 weightings.

to not have to consider both, we employ the same trick originally used in
[Wil17] to show N = d!D (which we will call µ simplification). The idea is to
view disjoint (m−1)-collections in Xm−1 as being embedded in Xm+1 and so
we only need to work in X2

m+1. Let σ ∈ Xm−1, then we get a corresponding
µ(σ) ∈ Xm+1 by shifting all paths up two units, adding ascents from (−i, i)
to (−i + 1, i + 1) and descents from (i − 1, i + 1) to (i, i) for 1 ≤ i ≤ m, and
finally adding a V-path at height m + 1. Then µ(σ) has the same number
of flat steps as σ and

∏
τ∈µ(σ)

ω2(τ) = d!∏
τ∈σ

ω0(τ). (14)

Let µ(X2
m−1) ⊆ X2

m+1 denote the disjoint (m + 1)-collections that are these
embeddings of all the disjoint (m− 1)-collections in X2

m−1, then by (14), we
have

N ′′ − d!D′′ = t−2 ∑
σ∈X2

m+1

∏
τ∈σ

ω2(τ) − d!t−2 ∑
σ∈X2

m−1

∏
τ∈σ

ω0(τ)

= t−2 ∑
σ∈X2

m+1∖µ(X
2
m−1)

∏
τ∈σ

ω2(τ).

So our next step is to describe all disjoint (m + 1)-collections with two flat
steps that are not embeddings of disjoint (m − 1)-collections with two flat
steps. We have four disjoint cases:

1. The first flat step at height p1 = 1 and the second flat step is at height
p2 where 2 ≤ p2 ≤m + 1.
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2. The first flat step is at height p1 ≥ 2. The second flat step is at height
p2 =m and we either have a M-path or an asymmetric M-path above
p2.

3. The first flat step is at height p1 ≥ 2. The second flat step is at height
p2 =m + 1.

4. The two flat steps are at heights between 2 and m − 1 but with no
V-paths above height p2.

Abusing notation slightly, let σ be the total weighting of the disjoint col-
lections that are in any of the four cases above and moreover have two
centered flat steps. Let L be the corresponding weighting for disjoint col-
lections where the second flat step is offset to the left and let R be the
corresponding weighting where the second flat step is offset to the right. By
the symmetry reasoning above, we have that L = R, so we have that

N ′′ − d!D′′ = σ +L +R = σ + 2L (15)

We explicitly give expressions for σ and L below:

σ = ∑
2≤p2≤m+1
0≤q1≤p2−2

0≤q2≤m+1−p2

ω2(σm+11,p2,q1,q2) + ∑
2≤p1≤m−1

0≤q1≤m−1−p1

ω2(σm+1p1,m,q1,1)

+ ∑
2≤p1≤m

0≤q1≤m−p1

ω2(σm+1p1,m+1,q1,0) + ∑
2≤p1≤m

p1+1≤p2≤m−1
0≤q1≤p2−p1−1

ω2(σm+1p1,p2,q1,m+1−p2)
(16)

and

L = ∑
2≤p2≤m+1
0≤q1≤p2−2

0≤q2≤m+1−p2

ω2(Lm+11,p2,q1,q2) + ∑
2≤p1≤m−1

0≤q1≤m−1−p1

ω2(Lm+1p1,m,q1,m)

+ ∑
2≤p1≤m

0≤q1≤m−p1

ω2(Lm+1p1,m+1,q1,0) + ∑
2≤p1≤m

p1+1≤p2≤m−1
0≤q1≤p2−p1−1

ω2(Lm+1p1,p2,q1,m+1−p2).
(17)

6.2 Proof that σ = L

It might seem overwhelming to have to calculate both σ and L, however,
the following lemma allows us to bypass one of these calculations.

Lemma 6.1. Let σ and L be given respectively as in (16) and (17) above.
Then σ = L.
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Proof. We prove the lemma by showing that there is a bijection of sets
f ∶ σ → L that preserves the product of the weights in each disjoint (m+ 1)-
collection. Let δ be a disjoint (m + 1)-collection in σ. In general, δ will
have its first flat step at p1 and second flat step at p2. In between the
two flat steps there will be q1 M-paths followed by p2 − p1 − q1 number of
V-paths. We’ll call the height at which this first V-path appears to be v.
Then we define f(δ) to be a disjoint (m + 1)-collection in L where we take
δ and replace the V-path at v with a off-centred flat step path and all the
paths from v + 1 up to p2 are replaced with asymmetric M-paths. If δ had
no V-paths in between the first two flat steps, then just replace the second
flat step with an off-centred flat step. Clearly f(δ) is a unique disjoint
(m + 1)-collection in L and this defines a well-defined function of sets from
σ to L. We can see that f preserves the product of the weights on δ: each

V-path starting at a height of say, h had product of weights
(2h−1)!
(h−1)! and this

path was replaced by an asymmetric M-path with product of weights
(2h−2)!
(h−1)!

but on the asymmetric M-path of height h + 1 we have an extra factor of
(2(h + 1) − 3) = (2h + 2 − 3) = (2h − 1) so in total we also have product of

weights
(2h−1)!
(h−1)! . Note that this also applies to the flat step we introduced

at height v: it had product of weights
(2v−2)!
(v−1)! but the asymmetric M-path

just above it gives an extra factor of (2v − 1) which is already accounted

for. Finally the flat step at p2 in δ had product of weights
(2p2−2)!
(p2−1)

which
is the same as the product of the weights in the asymmetric M-path we
introduced at p2. So we see that f preserves weighting. An example of two
disjoint collections with the same product of weights that are identified by
f is given in Figure 6 below.

Now we define a function g ∶ L→ σ. Let δ instead be a disjoint (m + 1)-
collection in L. The collection δ has a second off-centred flat step at height
p2 with q1 number of asymmetric M-paths above it. Then we define g(δ) to
be the disjoint (m+1)-collection where we replace the second flat step at p2
and all the asymmetric M-paths above it with V-paths except for the last
one, which we turn into a centred flat step (ie. at height p2 + q1. The paths
above p2+q1 will be either V-paths or (symmetric) M-paths and so this gives
us a disjoint (m + 1)-collection in σ. Clearly, g, f are inverse to each other,
giving us a bijection σ → L. Since f preserves products of weights, this also
gives us that σ = L as values.



6 DISJOINT K-COLLECTIONS WITH TWO FLAT STEPS 30

2

3

4

3

5

6

5

4

3

2

5

4

3

6

5

4

Figure 6: Two corresponding disjoint 4-collections under the bijection f .
The total product of weights if 43200 for both collections.

6.3 Simplifying the σ Term

Since we understand V-paths, we can immediately write down an explicit
expression for N :

N = ∏
τ∈σm+1

roof

ω2(τ) =
m+1

∏
k=1

(2k − 1)!
(k − 1)!

.

So by the equality of σ and L and (15), we have

N ′′ − d!D′′

N
= σ + 2L

N
= 3σ

N
.

Earlier we had split σ into four smaller sums based on which case they
fell into (equation (16)). Consider a disjoint (m + 1)-collection in the first
case, that is, we fix p1 = 1, 2 ≤ p2 ≤m + 1, 0 ≤ q1 ≤ p2 − 2, 0 ≤ q2 ≤m + 1 − p2.
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Then each summand in this first sum is given by

σ′

N
=

(
q1+2

∏
k=2

(2k − 2)!(2k − 2))(
p2−1

∏
k=q1+2

(2k − 1)!)(2p2 − 2)!

(
m+1

∏
k=0

(2k − 1)!)
×

(
p2+q2
∏

k=p2+1
(2k − 2)!(2k − 2))(

m+1

∏
k=p2+q2+1

(2k − 1)!)

(
m+1

∏
k=0

(2k − 1)!)

=
(
q1+2

∏
k=2

(2k − 2)!(2k − 2)) (2p2 − 2)!(
p2+q2
∏

k=p2+1
(2k − 2)!(2k − 2))

(
q1+2

∏
k=2

(2k − 1)!)(
p2+q2
∏
k=p2

(2k − 1)!)

= 1

2p2 − 1
(
q1+2

∏
k=2

(2k − 2)
(2k − 1)

)
⎛
⎝

p2+q2

∏
k=p2+1

(2k − 2)
(2k − 1)

⎞
⎠
.

So for the first case, we have

σ1
N

= ∑
2≤p2≤m+1
0≤q1≤p2−2

0≤q2≤m+1−p2

1

2p2 − 1
(
q1+2

∏
k=2

(2k − 2)
(2k − 1)

)
⎛
⎝

p2+q2

∏
k=p2+1

(2k − 2)
(2k − 1)

⎞
⎠
. (18)

We similarly find expressions for the other three smaller sums.
Consider a disjoint (m + 1)-collection in the second case, that is, we fix

2 ≤ p1 ≤m−1,p2 =m,0 ≤ q1 ≤m−1−p1, q2 = 1. Then each summand is given
by

σ′

N
= 1

2p1 − 1

⎛
⎝

p1+q1

∏
k=p1+1

(2k − 2)
(2k − 1)

⎞
⎠
( 2m

(2m − 1)(2m + 1)
)

and for the second case, we have

σ2
N

= ∑
2≤p1≤m−1

0≤q1≤m−p1−1

1

2p1 − 1

⎛
⎝

p1+q1

∏
k=p1+1

(2k − 2)
(2k − 1)

⎞
⎠
( 2m

(2m − 1)(2m + 1)
) . (19)

Consider a disjoint (m+ 1)-collection in the third case. Then each sum-
mand is given by

σ′

N
= 1

2p1 − 1

⎛
⎝

p1+q1

∏
k=p1+1

(2k − 2)
(2k − 1)

⎞
⎠
( 1

2m + 1
)
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and for the third case, we have

σ3
N

= ∑
2≤p1≤m

0≤q1≤m−p1

1

2p1 − 1

⎛
⎝

p1+q1

∏
k=p1+1

(2k − 2)
(2k − 1)

⎞
⎠
( 1

2m + 1
) . (20)

Consider a disjoint (m + 1)-collection in the fourth case. Then each
summand is given by

σ′

N
= 1

2p1 − 1

⎛
⎝

p1+q1

∏
k=p1+1

(2k − 2)
(2k − 1)

⎞
⎠

1

2p2 − 1

⎛
⎝

m+1

∏
k=p2+1

(2k − 2)
(2k − 1)

⎞
⎠

and for the fourth case, we have

σ4
N

= ∑
2≤p1≤m

p1+1≤p2≤m−1
0≤q1≤p2−p1−1

1

2p1 − 1

⎛
⎝

p1+q1

∏
k=p1+1

(2k − 2)
(2k − 1)

⎞
⎠

1

2p2 − 1

⎛
⎝

m+1

∏
k=p2+1

(2k − 2)
(2k − 1)

⎞
⎠
. (21)

6.4 Putting It All Together

So combining (13), (18), (19), (20) and (21) together, we give an explicit
expression for

d2

dt2
Mag (tBd

2) .

Proposition 6.2. Let d be odd and Bd
2 be the closed d-dimensional Eu-
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clidean ball. Then

d2

dt2
Mag(tBd

2)∣t=0 =

6 ∑
2≤p2≤m+1
0≤q1≤p2−2

0≤q2≤m+1−p2

1

2p2 − 1
(
q1+2

∏
k=2

(2k − 2)
(2k − 1)

)
⎛
⎝

p2+q2

∏
k=p2+1

(2k − 2)
(2k − 1)

⎞
⎠
+

6 ∑
2≤p1≤m−1

0≤q1≤m−p1−1

1

2p1 − 1

⎛
⎝

p1+q1

∏
k=p1+1

(2k − 2)
(2k − 1)

⎞
⎠
( 2m

(2m − 1)(2m + 1)
)+

6 ∑
2≤p1≤m

0≤q1≤m−p1

1

2p1 − 1

⎛
⎝

p1+q1

∏
k=p1+1

(2k − 2)
(2k − 1)

⎞
⎠
( 1

2m + 1
)+

6 ∑
2≤p1≤m

p1+1≤p2≤m−1
0≤q1≤p2−p1−1

1

2p1 − 1

⎛
⎝

p1+q1

∏
k=p1+1

(2k − 2)
(2k − 1)

⎞
⎠

1

2p2 − 1

⎛
⎝

m+1

∏
k=p2+1

(2k − 2)
(2k − 1)

⎞
⎠
−

V1 ∑
1≤p≤m−1

0≤q≤m−1−p

1

2p + 1

p+q

∏
k=p+1

( 2k

2k + 1
) .

(22)

Coding these explicit expressions in Matlab, we are able to plot these
second derivative terms against the dimension of the ball (see Figure 7).

The first few points do indeed align with those directly computed in (4)
in chapter 5 above. In fact, the plot suggests the second order terms depend
linearly on the dimension, though work to confirm or disprove this is still
ongoing. The code used to produce Figure 7 can be found at the public
github repository https://github.com/ssyl55/mastersthesis-src.

6.5 Skip factorials

This section describes ongoing work to further simplify the expression ar-
rived at in Proposition 6.2. The products

b

∏
k=a

(2k − 2)
(2k − 1)

, (23)

b

∏
k=a

2k

2k + 1
(24)

https://github.com/ssyl55/mastersthesis-src
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Figure 7: Second order terms computed from (22) in Proposition 6.2 above
for odd dimensions from 3 to 41 alongside the values as predicted by the
erstwhile convex magnitude conjecture (6).

that appear in the sums in (22) above are ratios of skip or double factorials.
In the following, we will use the identities about skip factorials given below
[Weib]:

(2n)!! = 2nn!,

(2n − 1)!! = (2n)!
2nn!

,

(2n + 1)!! = (2n + 1)!
2nn!

.

We will also use Catalan numbers [Weia], which are defined by

Cn =
1

n + 1
((2n)
n

) = 1

2n + 1
((2n + 1)

n
).
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Using these identities, we rewrite the product (23):

b

∏
k=a

(2k − 2)
(2k − 1)

= 2(a − 1)
2a − 1

⋯2(b − 1)
2b − 1

= (2(b − 1))!!
(2(a − 2))!!

[ (2b − 1)!!
(2(a − 1) − 1)!!

]
−1

= 2b−1(b − 1)!
2a−2(a − 2)!

[(2b)!
2bb!

2a−1(a − 1)!
(2(a − 1))!

]
−1

= 22b−1

22(a−1)−1
b!(b − 1)!

(2b)!
(2(a − 1))!

(a − 1)!(a − 2)!
= 22b−1

22(a−1)−1
(a − 1)(2(a−1)a−1

)
b(2bb )

= 22b−1

22(a−1)−1
(a − 1)aCa−1
b(b + 1)Cb

.

(25)
And similarly we rewrite (24):

b

∏
k=a

2k

2k + 1
= 2a

2a + 1
⋯ 2b

2b + 1
= (2b)!!

(2(a − 1))!!
[ (2b + 1)!!
(2a − 1)!!

]
−1

= 2bb!

2a−1(a − 1)!
[(2b + 1)!

2bb!

2aa!

(2a)!
]
−1

= 22b

22a−1
(b!)2

(2b + 1)!
(2a)!

a!(a − 1)!

= 22b

22a−1
a(2aa )

(b + 1)(2b+1b )
= 22b

22a−1
a(a + 1)Ca

(2b + 1)(b + 1)Cb
.

(26)

Using (26), we can rewrite the last sum in (22) as the following:

V1 ∑
1≤p≤m−1

0≤q≤m−1−p

1

2p + 1

p+q

∏
k=p+1

( 2k

2k + 1
)

= V1 ∑
1≤p≤m−1

0≤q≤m−1−p

1

2p + 1

22(p+q)

22(p+1)−1
(p + 1)(p + 2)Cp+1

(2(p + q) + 1)(p + q + 1)Cp+q
.

Setting k = p + q, this last sum turns into

V1
m−1

∑
k=1

k

∑
p=1

1

2p + 1

22k

22(p+1)−1
(p + 1)(p + 2)Cp+1
(2k + 1)(k + 1)Ck

= V1
m−1

∑
k=1

22k

(2k + 1)(k + 1)Ck

k

∑
p=1

(p + 1)(p + 2)Cp+1
22p+1(2p + 1)

.



6 DISJOINT K-COLLECTIONS WITH TWO FLAT STEPS 36

The inner sum on the right hand side of the above can be further sim-
plified

k

∑
p=1

(p + 1)(p + 2)Cp+1
22p+1(2p + 1)

=
k

∑
p=1

(p + 1)(p + 2) 1
p+2

(2(p+1)
p+1

)
22p+1(2p + 1)

=
k

∑
p=1

(p + 1) (2(p+1))!
[(p+1)!]2

22p+1(2p + 1)

=
k

∑
p=1

(2(p + 1))!
p!(p + 1)!22p+1(2p + 1)

.

(27)

Wolfram Alpha says that the last sum of (27) can be simplified to

k

∑
p=1

(2(p + 1))!
p!(p + 1)!22p+1(2p + 1)

= (k + 1)(2(k + 2))!
22(k+1)(2k + 3)(k + 1)!(k + 2)!

− 1. (28)
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