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Abstract

Some notes on modules and tensor products of modules.

Modules

The Basics

Definition (Modules over a ring). Let R be a ring. A left R-module M is
an abelian group (M,+) with a map R×M →M (also known as an action
of R over M) such that for all r, s ∈ R, m,n ∈M we have:

1. (r + s)m = rm+ sm

2. r(m+ n) = rm+ rn

3. (rs)m = r(sm)

4. 1m = m (If R contains 1).

We can define right R-modules analogously. Note that when R is a field,
then a module over a field is precisely the same thing as a vector space over
that field.

Definition (Submodules). Let M be a R-module. A submodule of M is a
subgroup N of M that is closed under the ring action, that is, rn ∈ N for
all r ∈ R, n ∈ N (in the case of left R-modules).

One important example of a module are the Z-modules:

Example 1 (Z-Modules). Consider the ring Z and any abelian group A.
Then we can make A into a Z-module by defining the action Z×A→ A by
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na =


a+ a+ · · ·+ a (n times) n > 0

0 n = 0
−a− a− · · · − a (n times) n < 0

So any abelian group A is a Z-module. Conversely, it turns out that
every Z-module is an abelian group.

Now we define the notion of module homomorphisms.

Definition (Module Homomorphisms). Let M and N be R-modules. A
function ϕ : M → N is a module homomorphism if for all r ∈ R and
x, y ∈M we have

1. ϕ(x+ y) = ϕ(x) + ϕ(y)

2. ϕ(rx) = rϕ(x)

Now our goal is to arrive at a definition of tensor products of modules,
which will involve free Z-modules, so let’s first go over the definition of a
free module and an important universal property of free modules.

Freely Generated Modules

Definition (Free Modules). An R-module F is free on a subset A ⊆ F if for
every nonzero x ∈ F , there are unique nonzero elements r1, r2, . . . , rn ∈ R
and unique a1, a2, . . . , an ∈ A such that x = r1a1 + r2a2 + · · · + rnan for
some positive integer n. We call A a basis for F and that A is the set of
free generators of F .

Notice that when R is a field, then A is the set of basis vectors (will also
need linear independence) for the vector space F over the field R.

We now talk about an important universal property of free modules,
which is a precursor to the defining universal property of tensor products.

Proposition 1 (Universal Property of Free Modules). For any set A there is
a free R-module F (A) on A such that if M is any R-module and ϕ : A→M
is any map of sets, then we have the following commutative diagram:
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A F (A)

M

� � //ι

��

ϕ

��

∃!Φ

where Φ is an R-module homomorphism.

Proof. By convention, if A = ∅ we define F (A) = {0}. In that case, ϕ is the
unique map of sets ∅ →M , F (A) is also the empty set and ι is the identity
map, which means Φ = ϕ. Otherwise, if A is nonempty, then let F (A) be
the collection of all set functions f : A → R such that f(a) = 0 for all but
finitely many a ∈ A. We can make F (A) into an R-module by pointwise
addition of functions and pointwise multiplication of ring elements times a
function, so we have for all f, g ∈ F (A) and r ∈ R:

(f + g)(a) = f(a) + g(a)
(rf)(a) = r(f(a))

for all x ∈ A.
Let’s just check to make sure this indeed gives us an R-module. Let

r, s ∈ R, f, g ∈ F (A). For each a ∈ A:

1. (r+ s)f gives (r+ s)(f(a)) which equals r(f(a)) + s(f(a)) (Since f(a)
is an element in R) which finally gives rf + sf . So (r+ s)f = rf + sf .

2. r(f + g) gives r(f(a) + g(a)) and since f(a), g(a) are elements in R,
this gives r(f(a)) + r(g(a)) = rf + rg.

3. (rs)f = (rs)(f(a)) = r(s(f(a))) = r(sf).

So F (A) is indeed an R-module. Now we need to show F (A) is freely
generated by A. We define the map ι : A→ F (A) by a 7→ fa where

fa(x) =

{
1 x = a
0 otherwise

Since ι is injective (Let a, b ∈ A such that fa = fb, then fa and fb both
take the value 1 at the same point x which is both equal to a and equal to
b, so a = b), we see that ι can be seen as an embedding of A in F (A). This
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allows us to view F (A) as all finite R-linear combinations of elements of A
in the following way:

Let f : A → R be a nonzero element of F (A). Then by definition of
F (A), f takes on a nonzero value (in R) for finitely many points in A, say
a1, a2, . . . , an. So at each ai, f takes on a nonzero value, say ri. That means
we can uniquely write f as theR-linear combination r1fai+r2fa2+· · ·+rnfan .
Hence, F (A) is indeed freely generated by A.

Now given the map on sets ϕ : A → M , we define Φ : F (A) → M
by
∑n

i=1 rifai 7→
∑n

i=1 riϕ(ai). Let’s verify that Φ is indeed a well-defined
R-module homomorphism. Let r ∈ R and f, g ∈ F (A). We have just
established that f can be written uniquely as

∑n
i=1 rifai and likewise g can

be written uniquely as
∑m

k=1 skgbk . Then:

1. well-defined: Since elements f ∈ F (A) are written uniquely as formal
R-linear sums of fa’s and ϕ is well-defined, Φ is well-defined.

2. Φ(rf) = Φ(r
∑n

i=1 rifai) = r
∑n

i=1 riϕ(ai) = rΦ(f)

3. Φ(f+g) = Φ(
∑n

i=1 rifai+
∑m

k=1 skgbk) = Φ(r1fa1+r2fa2+· · ·+rnfan+
s1gb1+s2gb2+. . . smgbm) = r1ϕ(a1)+r2ϕ(a2)+· · ·+rnϕ(an)+s1ϕ(b1)+
s2ϕ(b2)+· · ·+smϕ(bm) =

∑n
i=1 riϕ(ai)+

∑m
k=1 skϕ(bk) = Φ(f)+Φ(g).

Hence, Φ is a well-defined R-module homomorphism and by definition,
Φ restricted to A ⊆ F (A) is ϕ. Finally, since F (A) is generated by A, which
means the elements of F (A) are uniquely written as formal R-linear sums
of elements of A, once we know the values of ϕ on A, ϕ’s values on elements
of F (A) are uniquely determined. So Φ is the unique extension of ϕ to all
of F (A).

Tensor Products of Modules

Basic Definition

We now have the algebraic framework we need to define the tensor product
of modules:

Definition (Tensor Product of Modules). Let R be a ring with right R-
module M and left R-module N . Then the free Z-module on the set M×N ,
which we will write Z(M ×N) is the set of formal Z-linear sums of elements
(m,n) ∈ M × N . Since this is a free Z-module, it is an abelian group.
Quotienting out the subgroup H generated by elements of the form
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(m, (n1 + n2))− (m,n1)− (m,n2)
((m1 +m2), n)− (m1, n)− (m2, n)

(mr, n)− (m, rn)

produces the abelian quotient group Z(M × N)/H which we call the
tensor product of M and N over R, written M

⊗
RN . We write cosets

(m,n) in this abelian group as m ⊗ n and call them simple tensors in the
tensor product. Elements of M

⊗
RN are formal Z-linear sums of simple

tensors.

Note that quotienting out by that particular subgroup basically enforces
the following relations (which we write with tensor notation now):

m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2
(m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n

mr ⊗ n = m⊗ rn

Using these relations we can look at the following examples:

Example 2. For any tensor product M
⊗

RN we have m⊗0 = m⊗(0+0) =
m⊗ 0 +m⊗ 0, so m⊗ 0 = 0. Similarly, 0⊗n = (0 + 0)⊗n = 0⊗n+ 0⊗n,
so 0⊗ n = 0.

Example 3. Z/n
⊗

R Z/m = 0 whenever n,m are relatively prime. This is
because since n,m are relatively prime, for any a ∈ Z/n, ma = a, so for any
a ∈ Z/n, b ∈ Z/m, a⊗ b = ma⊗ b = a⊗mb = a⊗ 0 = 0.

More examples to come...

Universal Property of Tensor Products

There is a canonical map ι : M×N →M
⊗

RN defined by (m,n) 7→ m⊗n.

Definition (R-balanced map). Let M be a right R-module, N be a left
R-module and L be an abelian group. Then a map ϕ : M × N → L is R-
balanced if it is linear in each variable and additionally, ϕ(mr, n) = ϕ(m, rn)
for all m ∈M,n ∈ N, r ∈ R.

So the canonical map ι is R-balanced.
We now have the analogous universal property of the tensor product:

Proposition 2 (Universal Property of the Tensor Product). Let M be a
right R-module, N be a left R-module and L be any abelian group. Then
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there is a bijection between R-balanced maps ϕ : M × N → L and group
homomorphisms Φ : M

⊗
RN → L that satisfies the commutative triangle:

M ×N M
⊗

RN

L

//
ι

��

ϕ

��

Φ

Proof. In the first direction, let Φ be a group homomorphism fromM
⊗

RN →
L. Then defining ϕ = Φ ◦ ι, we have a map from M × N → L. We need
to check that ϕ is in fact R-balanced. Let m1,m2 ∈ M and n ∈ N . Then
ϕ(m1+m2, n) = Φ(ι(m1+m2, n)) = Φ((m1+m2)⊗n) = Φ(m1⊗n+m2⊗n).
Since Φ is a group homomorphism, we have Φ(m1 ⊗ n+m2 ⊗ n) = Φ(m1 ⊗
n) + Φ(m2 ⊗ n) = Φ(ι(m1, n)) + Φ(ι(m2, n)) = ϕ(m1, n) + ϕ(m2, n). So ϕ
is linear in M . Similarly we can show that ϕ is linear in N . Let r ∈ R,
then ϕ(mr, n) = Φ(ι(mr, n)) = Φ(mr ⊗ n) = Φ(m ⊗ rn) = Φ(ι(m, rn)) =
ϕ(m, rn). So ϕ is R-balanced in M ×N .

In the other direction, using Proposition 1 the R-balanced map ϕ defines
a Z-module homomorphism ϕ′ from the free Z module Z(M ×N) to L such
that ϕ′(m,n) = ϕ(m,n). Since ϕ is R-balanced, ϕ′ maps elements of the
form that generated the subgroupH in our definition of the tensor product to
0, so the kernel of ϕ′ contains H. Hence, ϕ′ induces a group homomorphism
Φ on the quotient group M

⊗
RN to L by Φ(m⊗ n) = ϕ′(m,n) = ϕ(m,n).

Since the elements m ⊗ n generate M
⊗

RN , Φ is uniquely determined by
this equation.

We now have to consider the module structure of the tensor product.
Notice that if R is a commutative ring, then since rm = mr, M

⊗
RN is a

left R-module given by:

r(m⊗ n) = (rm)⊗ n = (mr)⊗ n = m⊗ (rn)

In this case, Proposition 2 gives a bijection between R-bilinear maps M×
N → L (no longer needed to be R-balanced because of this commutativity
relation above) and R-module homomorphisms M

⊗
RN → L.

We have the following fact about the tensor product:

Proposition 3 (Tensor Product is Associative). X
⊗

(Y
⊗
Z) ∼= (X

⊗
Y )
⊗
Z.
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We actually have two proofs of this fact. The first uses only the universal
property of tensor products, while the second uses an application of the
Yoneda Lemma (see [Liu18]).

Proof using Universal Property. For each x ∈ X, we define a map

φ : Y × Z → (X
⊗

Y )
⊗

Z

(y, z) 7→ (x⊗ y)⊗ z

This map is bilinear because φ(y1 + y2, z) = (x ⊗ (y1 + y2)) ⊗ z =
((x ⊗ y1) + (x ⊗ y2)) ⊗ z = (x ⊗ y1) ⊗ z + (x ⊗ y2) ⊗ z and similarly for
the z-coordinate.

Since φ is bilinear, by the universal property it induces a linear map

Φx : Y
⊗

Z → (X
⊗

Y )
⊗

Z

y ⊗ z 7→ (x⊗ y)⊗ z

Now we define a map

δ : X × (Y ⊗ Z)→ (X
⊗

Y )
⊗

Z

(x,
n∑

i=1

yi ⊗ zi) 7→ Φx(
n∑

i=1

yi ⊗ zi) =
n∑

i=1

(x⊗ yi)⊗ zi

Again, this map is bilinear (because of linearity of Φx and properties of
the tensor product), so by the universal property it induces a linear map

∆ : X
⊗

(Y ⊗ Z)→ (X
⊗

Y )
⊗

Z

x⊗ (
n∑

i=1

yi ⊗ zi) =
n∑

i=1

x⊗ (yi ⊗ zi) 7→
n∑

i=1

(x⊗ yi)⊗ zi

We construct the inverse by fixing z ∈ Z and proceeding in a similar
way to get

Γ : (X
⊗

Y )⊗ Z → X
⊗

(Y
⊗

Z)

n∑
i=1

(xi ⊗ yi)⊗ z 7→
n∑

i=1

xi ⊗ (yi ⊗ z)
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Notice that in ∆ there is only one x and many z and in Γ there is only
one z and many x. One might think that this is a problem but we check
that ∆,Γ are indeed mutually inverse:

Γ(∆(
n∑

i=1

x⊗ (yi ⊗ zi))) = Γ(
n∑

i=1

(x⊗ yi)⊗ zi)

=
n∑

i=1

Γ((x⊗ yi)⊗ zi) By linearity of Γ

=

n∑
i=1

x⊗ (yi ⊗ zi)

and

∆(Γ(

n∑
i=1

(xi ⊗ yi)⊗ z)) = ∆(

n∑
i=1

xi ⊗ (yi ⊗ z))

=

n∑
i=1

∆(xi ⊗ (yi ⊗ z)) By linearity of ∆

=

n∑
i=1

(xi ⊗ yi)⊗ z

Proof using Yoneda Lemma. By the Yoneda Lemma, if two representable
functors HA, HA′

are isomorphic, then that means A ∼= A′. We first show
that the functor

Bilin(U, V ;−) : Vectk → Set

Vector space W 7→ set of bilinear maps U × V →W

is representable by showing that it is naturally isomorphic to the functor
HU

⊗
V = Vect(U

⊗
V,−)

We define the mapping tW : Bilin(U, V ;W ) → Vect(U
⊗
V,W ) by

tW (ϕ) = Φ where Φ is the linear map out of the tensor product uniquely
determined by ϕ given by the universal property of tensor products. We
define t−1W : Vect(U

⊗
V,W ) → Bilin(U, V ;W ) by t−1W (Φ) = ϕ. Clearly

tW , t
−1
W are inverse to each other. Let f : W → W ′. We need to show that

the following naturality square holds:
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Bilin(U, V ;W ) Bilin(U, V ;W ′)

Vect(U
⊗
V,W ) Vect(U

⊗
V,W ′)

//
f ◦ −

��

tW

��

tW ′

//

Vect(U
⊗
V, f) = f ◦ −

This clearly holds because of the following universal property:

U × V U
⊗
V

W

W ′

//
ι

��

Φ

''

ϕ

��

f

��

f ◦ ϕ

��

f ◦ Φ

So we have the following chain of isomorphisms:

Vect(X
⊗

(Y
⊗

Z),−) ∼= Bilin(X,Y
⊗

Z;−)

∼= 3-lin(X,Y, Z;−)

∼= Bilin(X
⊗

Y,Z;−)

∼= Vect((X
⊗

Y )
⊗

Z,−)

which will give us X
⊗

(Y
⊗
Z) ∼= (X

⊗
Y )
⊗
Z. The only line in here

we need to prove is the isomorphism Bilin(X,Y
⊗
Z;−) ∼= 3-lin(X,Y, Z;−).

So we need to establish a bijection between bilinear maps X × (Y
⊗
Z)→

W with 3-linear maps X × Y × Z → W . Firstly, given a bilinear map
ϕ : X×(Y

⊗
Z)→W , we can define a 3-linear map ϕ̃ : X×Y ×Z →W by
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(x, y, z) 7→ ϕ(x, ι(y, z)) where ι is the canonical map from Y ×Z → Y
⊗
Z.

ϕ̃ is clearly 3-linear because ϕ was linear in x and separately linear in ι(y, z),
while ι is bilinear.

Now going the other way suppose we had a 3-linear map ϕ : X×Y ×Z →
W . How do we get a bilinear map out of X × (Y

⊗
Z)? Fixing x ∈ X, we

have the bilinear map out of ϕx : Y × Z → W by (y, z) 7→ ϕ(x, y, z).
By the universal property of the tensor product, ϕx gives us a linear map
δx : Y

⊗
Z →W . We now define the bilinear map ϕ̂ : X×(Y

⊗
Z)→W by

(x,
n∑

i=1
yi⊗zi) 7→ δx(

n∑
i=1

yi⊗zi). Notice that this is a very similar construction

in our first proof using the universal property. Since δx is linear, ϕ̂ is clearly
linear in the second argument. It remains to check that ϕ̂ is linear in x:

ϕ̂(x1 + x2,
n∑

i=1

yi ⊗ zi) = δx1+x2(
n∑

i=1

yi ⊗ zi)

=
n∑

i=1

δx1+x2(yi ⊗ zi)

=
n∑

i=1

δx1+x2(ι(yi, zi))

=
n∑

i=1

ϕx1+x2(yi, zi) By definition of δx

=

n∑
i=1

ϕ(x1 + x2, yi, zi) By definition of ϕx

=

n∑
i=1

ϕ(x1, yi, zi) + ϕ(x2, yi, zi) By trilinearity of ϕ

Finally, it turns out that ˆ̃ϕ = ϕ and ˜̂ϕ = ϕ, so these are mutually inverse
to each other.
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