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Notions of size

Cardinality of a set
Measure of a set
Order of a group
Volume
Euler characteristic of a topological space
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Origins in category theory

Leinster in [Lei06] defines the Euler characteristic of a finite
category.
This definition is extended to finite enriched categories.
Lawvere in [Law73] observed that categories enriched in [0,•]
can be seen as metric spaces.
Definition of Euler characteristic for finite categories enriched in
[0,•] gives the definition of the magnitude of a finite metric space.

Stephen Shang Yi Liu (CWRU) Magnitude of odd-dimensional Euclidean balls March 19, 2020 5 / 71



Magnitude of a matrix I

Definition 1
Let M 2 Mn(R) be a n⇥n matrix. A weighting on M is a column
vector w 2 Rn such that Mw = 1. A coweighting on M is a row vector
v 2 Rn such that vM = 1⇤.
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Magnitude of a matrix II

Lemma 2
Suppose M possesses a weighting w and a coweighting v. Then

n
Â

j=1
wj =

n
Â

j=1
vj.

Proof.
n

Â
j=1

wj = 1⇤w = vMw = v1 =
n

Â
j=1

vj.

Stephen Shang Yi Liu (CWRU) Magnitude of odd-dimensional Euclidean balls March 19, 2020 7 / 71



Magnitude of a matrix III

Definition 3
Let M 2 Mn(R). If M possesses a weighting w and coweighting v, then
we say M has magnitude and its magnitude is given by

|M|=
n

Â
j=1

wj =
n

Â
j=1

vj.

The weighting of a matrix is not guaranteed to exist, but if the matrix
is invertible, then the calculation is more straightforward, as the
following lemma shows.

Stephen Shang Yi Liu (CWRU) Magnitude of odd-dimensional Euclidean balls March 19, 2020 8 / 71



Magnitude of a matrix IV

Lemma 4
If M is invertible, then M possesses a unique weighting and its
magnitude is given by

|M|=
n

Â
i,j=1

h

M�1
i

ij
.
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Magnitude of a matrix V

Proof.
Suppose M is invertible. Then the equation Mw = 1 has

wj =
h

M�11
i

j
=

n

Â
i=1

m(j)
i

where m(j) is the j-th row of M�1, as the unique solution. Then the
magnitude of M is given by

|M|=
n

Â
j=1

wj =
n

Â
j=1

n

Â
i=1

h

M�1
i

ij
.
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Finite metric spaces I

Definition 5
Let A be a finite metric space with distance function d. Define its
similarity matrix ZA by

[ZA]a,b = e�d(a,b).

Then if ZA has magnitude, then we say A has magnitude and we write

|A|= |ZA|.
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Finite metric spaces II

Example 6
1 Let A be the discrete space, that is, for all a 6= b 2 A, d(a,b) = •.

Let A have n points. Then the similarity matrix of A is In, the
n⇥n identity matrix, and the magnitude |A|= n.

2 Let A consist of two points of distance d apart. Then

ZA =



1 e�d

e�d 1

�

and by Lemma 4 above, the magnitude of A is |A|= 1+ tanh
�d

2
�

.
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The magnitude function I

Want to consider the magnitude of a space as we scale distances.

Definition 7
Let t > 0. Denote by tA the metric space containing the same points as
A but all distances are scaled by t. Then we call the assignment
t 7! |tA| the magnitude function of A.

Note that ZtA might not possess a weighting for all t, so the magnitude
function might only be a partially defined function of t.
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The magnitude function II

Example 8
Recalling the second example above, suppose A has two points of
distance d apart. Then

ZtA =



1 e�td

e�td 1

�

and the magnitude function is

Mag(tA) = 1+ tanh
✓

td
2

◆

.
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The magnitude function III
Theorem 9 (Proposition 2.2.6 of [Lei11])
Let A be a finite metric space. Then

tA is invertible and hence has magnitude for all but finitely many
t > 0.
The magnitude function of A is analytic at all t > 0 such that tA is
invertible.
for t � 0, there is a unique, positive, weighting on tA.
For t � 0, the magnitude function of A is increasing.
|tA|! #A as t ! •.

Idea of proof.
As t ! •, the similarity matrix ZtA ! In.
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The magnitude function IV
Example 10
Let K3,2 denote the bipartite graph of 3 and 2 vertices with each edge
having distance t and using the shortest-path metric.

•a1

•a2

•a3

•b1

•b2

t

Figure: The graph K3,2.

Then the magnitude function of
K3,2 is given by:

Mag
�

tK3,2
�

=
5�7e�t

(1+ e�t)(1�2e�2t)
.
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Positive definite metric spaces I

For what kinds of spaces does magnitude behave more nicely?

Definition 11
A finite metric space A is called positive definite if its similarity
matrix ZA is a positive definite matrix.

Positive definite matrices are always invertible, so any positive
definite metric space automatically has magnitude.
Principal submatrices of positive definite matrices are positive
definite so subspaces of positive definite metric spaces also have
magnitude.
Finite subsets of Euclidean space are positive definite metric
spaces.
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Positive definite metric spaces II

Theorem 12 (Proposition 2.4.3 of [Lei11])

If A is a finite positive definite metric space of n points, then A has
magnitude and the magnitude is given by

|A|= sup
v6=0

(Âa2A va)
2

v⇤ZAv

where v 2 Rn. The supremum is attained if and only if v is a nonzero
scalar multiple of the unique weighting on A.

Idea of proof.
Cauchy-Schwarz inequality applied to arbitrary v and weighting w.
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Positive definite metric spaces III
Theorem 13 (Lemma 2.4.10 of [Lei11])

If A is a positive definite metric space and B ✓ A, then |B| |A|.

Proof.
Since A is positive definite and B is a subspace, B is also positive
definite and both sapces have magnitude. Furthermore, using Theorem
12 above, we have

|B|= sup
v6=0

(Âb2B vb)
2

v⇤ZBv
 sup

v6=0

(Âa2A va)
2

v⇤ZBv
= |A|

since the space of vectors we are considering for B is a subspace of the
space of vectors in consideration for A.
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Infinite metric spaces I

Want to extend the definition of magnitude to include infinite sets.
Idea: approximate by finite subsets.
Question: Is the answer we get via approximation by finite
subspaces independent of the approximation we choose?
Answer: Yes, for a specific class of metric spaces.
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Infinite metric spaces II

Definition 14
Let A be a metric space. We say A is a positive definite metric space
if every finite subspace of A is positive definite. If A has the property
that tA is positive definite for all t > 0, then A is of negative type.

Negative type is a classical property from metric space theory.
Many familiar metric spaces are of negative type and we will see
later that they have magnitude.
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Infinite metric spaces III

Definition 15 (The Hausdorff metric)
Let X be a metric space and A,B be compact subsets. Then dH(A,B),
the Hausdorff distance between A,B is defined to be

dH(A,B) = max
⇢

sup
a2A

d(a,B),sup
b2B

d(A,b)
�

.
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Infinite metric spaces IV

Definition 16 (Gromov-Hausdorff distance)
Let A,B be compact metric spaces. Then dGH(A,B) the
Gromov-Hausdorff distance between A,B is defined to be

dGH(A,B) = infdH(j(A),y(B))

where the infimum is over all metric spaces X and isometric
embeddings j : A ! X and y : B ! X.
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Infinite metric spaces V

Theorem 17 (Proposition 3.1 of [LM17])
The quantity

M(A) = sup{|A0| : A0 ✓ A,A0 finite}

is a lower semicontinuous function of A (taking values in [0,•]) in the
class of compact positive definite metric spaces equipped with the
Gromov-Hausdorff topology.

Note that if A is a finite positive definite metric space, then by
semicontinuity and Theorem 13, M(A) = |A|, so this agrees with
the finite case.
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Infinite metric spaces VI

Definition 18
Let A be a compact positive definite metric space. Then the magnitude
of A, written |A|, is defined to be the value M(A) from above.
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Infinite metric spaces VII

Here are some examples of metric spaces that are of negative type and
hence their compact and finite subspaces have magnitude:

Example 19
1 `n

p for n � 1 and 1  p  2,
2 Lp[0,1] for 1  p  2,
3 n-spheres with the geodesic distance ([Wil14]).
4 weighted trees.
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The convex magnitude conjecture I

Computer calculations by Leinster and Willerton in [LW13] led to
what became known as the convex magnitude conjecture. It has since
been shown to be false, but it, along with various asymptotic versions
of the conjecture, motivates many of the results in this section.

Definition 20
Let K n be the space of compact convex sets in Rn. A nonempty set in
K n is called a convex body. A function P : K n ! R is called a
valuation if

P( /0) = 0,
P(A[B) = P(A)+P(B)�P(A\B), where A,B,A[B 2 K n.
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The convex magnitude conjecture II

Theorem 21 (Hadwiger’s Theorem ([Sch14]))
There are valuations V0,V1, . . . ,Vn where each Vi is homogeneous of
degree i such that if P is a valuation that is invariant under rigid
motions and continuous with respect to the Hausdorff metric, then
there are constants c0,c1, . . . ,cn such that

P =
n

Â
i=0

ciVi.

Each Vi is called the i-th intrinsic volume.
Vn is the usual n-dimensional volume, Vn�1 is half the surface
area, and V0 is the Euler characteristic.
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The convex magnitude conjecture III

Leinster and Willerton in [LW13] stated the following conjecture.

Convex magnitude conjecture
Let K 2 K n. Then magnitude is a valuation and moreover

Mag(tK) = Â
i�0

Vi(K)

i!wi
ti

where wi is the volume of the i-th dimensional unit ball.
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The convex magnitude conjecture IV

Theorem 22 (Theorem 7 of [LW13])
The magnitude of the straight line segment L of length ` has the form

|L|= 1+
`

2

That is,
Mag

⇣

tB1
2

⌘

=
�

�[�t, t]
�

�= 1+ t.
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The convex magnitude conjecture V

Barcelo and Carbery explicitly calculated the magnitude function for
odd-dimensional Euclidean balls, showing that the magnitude function
is a rational function in t:

Theorem 23 ([BC16])
Let d be odd and denote by Bd

2 the closed d-dimensional Euclidean
ball. Then

Mag
⇣

tB3
2

⌘

=
t3

3!
+ t2 +2t+1,

Mag
⇣

tB5
2

⌘

=
t6 +18t5 +135t4 +525t3 +1080t2 +1080t+360

5!(t+3)
.
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The convex magnitude conjecture VI

In particular, the magnitude function for B5
2 shows that the convex

magnitude conjecture is in general false.
However, various asymptotic versions of the convex magnitude
conjecture (with somewhat different coefficients) have been
shown.
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Asymptotic results I

Theorem 24 (Theorem 1 of [BC16])

Let K be a nonempty compact set in Rn. Then

Mag(tK)! 1 as t ! 0

and
t�nMag(tK)! Vol(K)

n!wn
as t ! •.

So the first and last coefficients were correctly predicted by the
conjecture as we take t ! 0 and t ! • respectively.
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Asymptotic results II

Theorem 25 (Theorem 2(c)-(d) of [GG17])

Let d � 3 be odd and let K be a d-dimensional convex body with
nonempty interior and smooth boundary. Then

Mag(tK) =
1

d!wd

⇣

Vd(K)td +(d+1)Vd�1(K)td�1

+
p
4
(d+1)2Vd�2(K)td�2

⌘

+O
⇣

td�3
⌘

as t ! •.

So we can recover the next two intrinsic volumes in the asymptotic
expansion for large t, but the coefficients are not the ones predicted by
the convex magnitude conjecture.
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Asymptotic results III

Theorem 26 (Theorem 4 of [Mec19])

Let d = 2m+1 be odd and denote by Bd
2 the d-dimensional closed

Euclidean ball. Then

d
dt

Mag
⇣

tBd
2

⌘

�

�

t=0 =
1
2

V1

⇣

Bd
2

⌘

where

V1

⇣

Bd
2

⌘

=
(2m+1)

p
pG(m+1)

G
�

m+ 3
2
� = 2

✓

m� 1
2

m

◆�1

is the first intrinsic volume of the closed unit ball.
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Asymptotic results IV

This result depends on work done by Willerton in [Wil17] to
reformulate the magnitude function of odd-dimensional
Euclidean balls in terms of collections of Schröder paths.
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Schröder paths I

Definition 27
A Schröder path is a finite directed path in the integer lattice in
which each step starting at (x,z) 2 Z2 is either an ascent to
(x+1,y+1), a descent to (x+1,y�1) or a flat step to (x+2,y).
Fix k � 0. A disjoint k-collection is a family of Shröder paths
from (�i, i) to (i, i for each 0  i  k such that no node in Z2 is
contained in more than one path.
We denote by Xk the set of all disjoint k-collections and by Xj

k the
sete of all disjoint k-collections containing exactly j flat steps.
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Schröder paths II

Figure: A disjoint 3-collection.
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Schröder paths III

What does X0
k look like? Starting from i = 0 and moving up we

realize that each path at height i can only consist of i ascents
followed by i descents. We will call this kind of path a V-path at
height i.
The set X0

k consists of only one collection, which we’ll call s k
roof,

which is entirely made up of V-paths for each 0  i  k.
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Schröder paths IV

Figure: The disjoint 3-collection s3
roof.
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Schröder paths V

Let s 2 Xk be a disjoint k-collection. For each path in s we associate
to each step t a weighting by

wj(t) =

8

>

<

>

:

1 if t is an ascent,
t if t is a flat step,
y+1� j if t is a descent from height y to height y�1.

For a collection s 2 Xk the total weight of s , denoted wj(s) is the
product of the weightings of all the steps on each path in s . So wj(s)
is a polynomial in t with degree the maximum number of flat steps in
s .
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Schröder paths VI

1

3

2

5

4

3

Figure: The disjoint 3-collection s3
roof with w2 weightings.
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Schröder paths VII

Theorem 28 (Corollary 27 of [Wil17])

Let d = 2m+1 be odd. Then

Mag
⇣

tBd
2

⌘

=

Â
s2Xm+1

w2(s)

d! Â
s2Xm�1

w0(s)
=:

N(t)
d!D(t)

for all t > 0.

Meckes proved his result in Theorem 26 by differentiating the
expression above, evaluating at zero and simplifying.
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The problem I

Goal
Our goal is to calculate the value of

d2

dt2
Mag

⇣

tBd
2

⌘

�

�

t=0.

Stephen Shang Yi Liu (CWRU) Magnitude of odd-dimensional Euclidean balls March 19, 2020 48 / 71



The problem II

Outline
1 Apply the quotient rule to Theorem 28 and the result of Theorem

26 to express the second derivative in terms of N(t),D(t).
2 The expression will contain first and second derivatives of N(t)

and D(t) evaluated at t = 0. First consider disjoint k-collections
containing exactly one flat step to simplify terms containing first
derivatives.

3 Consider disjoint k-collections containing exactly two flat steps to
simplify terms containing second derivatives.

4 Combine the previous two steps to arrive at an (partial) answer.
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Second derivative

After applying the quotient rule, we get

d2

dt2
Mag

⇣

tBd
2

⌘

�

�

t=0 = 2


N00(0)�d!D00(0)
N(0)

�

�V1

⇣

Bd
2

⌘



D0(0)
D(0)

�

.

where

D(0) = w0

⇣

sm�1
roof

⌘

=
m�1

’
k=0

(2k+1)!
(k+1)!

N(0) = w2

⇣

sm+1
roof

⌘

=
m+1

’
k=0

(2k�1)!
(k�1)!
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Collections with one flat step I

D0(0) = t�1 Â
s2X1

m�1

w0(s)

So we need to consider disjoint (m�1)-collections of Schröder paths
containing exactly one flat step.
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Collections with one flat step II
Let s 2 X1

k with path containing flat step at height p.
All paths below p must be V-paths.
The disjointness condition means the flat step at height p must be
centered.
Paths above the flat step path M-paths or V-paths.
Cannot have V-paths below M-paths.

Lemma 29
Let sm�1

p,q denote the disjoint (m�1)-collection with centered flat step
at height p and q M-paths above it. Then

X1
m�1 =

[

1pm�1
0qm�1�p

n

sm�1
p,q

o

.
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Collections with one flat step III

1

t
2

4 4
3

7
6

5
4

Figure: A disjoint 4-collection with one flat step at height 2 and with w2
weightings and total weight 80640t.
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Collections with one flat step IV
By Lemma 29 above, we have

D0(0) = Â
1pm�1

0qm�1�p

 

p�1

’
k=0

(2k+1)!
(k+1)!

!

✓

(2p)!
(p+1)!

◆

⇥

 

p+q

’
k=p+1

(2k)!(2k)
(k+1)!

! 

m�1

’
k=p+q+1

(2k+1)!
(k+1)!

!

.

So we have

D0(0)
D(0)

= Â
1pm�1

0qm�1�p

1
2p+1

p+q

’
k=p+1

✓

2k
2k+1

◆

.

Stephen Shang Yi Liu (CWRU) Magnitude of odd-dimensional Euclidean balls March 19, 2020 54 / 71



Collections with two flat steps I

The N00(0)�d!D00(0) term requires us to think about collections containing
exactly two flat steps.

Again, all paths underneath the one containing flat step(s) must be V-paths.

But then this means that we can’t have one path containing two flat steps.

Furthermore, the path containing the first flat step must have its flat step
centered.

We can have M-paths above the first flat step path.

Second flat step can either be centered, or offset by one space to the left or
right.

Above an off-centered flat step, we can have asymmetric M-paths followed
by M-paths and then followed by V-paths.
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Collections with two flat steps II

t

2
t

4
3 3

6 6
5

4

t
t

2
3

4
3

6 6
5

4

Figure: Disjoint 4-collections containing two flat steps that are reflections of
each other. Using w2 weightings, both have total weight 51840t2.
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Collections with two flat steps III
Denote by s k

p1,p2,q1,q2
the disjoint k-collection with two centered

flat step paths at heights p1 and p2 respectively, q1 M-paths above
the first flat step, q2 M-paths above the second flat step, and
V-paths everywhere else.
Denote by Lk

p1,p2,q1,q2
the disjoint k-collection with two flat step

paths at heights p1 and p2 respectively where the flat step at p2 is
offset one to the left, M-paths between p1 and p2, q1 asymmetric
(left) M-paths above p2, q2 M-paths above p2 +q1 and V-paths
everywhere else.
Rk

p1,p2,q1,q2
: The same as Lk

p1,p2,q1,q2
but the right offset case.

Then

X2
k =

[

p1,p2,q1,q2

�

s k
p1,p2,q1,q2

 

[
[

p1,p2,q1,q2

�

Lk
p1,p2,q1,q2

 

[
[

p1,p2,q1,q2

�

Rk
p1,p2,q1,q2

 

.
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Collections with two flat steps IV

N00(0)�d!D00(0) means we will have to consider both X2
m�1 as

well as X2
m+1.

Can apply a trick of thinking of collections in Xm�1 as being
embedded in Xm+1.

Lemma 30 (Willerton)
Let d = 2m+1 and s 2 Xm�1. Then define µ(s) 2 Xm+1 by shifting
all paths in s up two units, adding ascents from (�i, i) to
(�i+1, i+1) and descents from (i�1, i+1) to (i, i) for 1  i  m and
finally adding a V-path at height m+1. Then

w2(µ(s)) = d!w0(s).
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Collections with two flat steps V

t

t 4

6 6
5

1
t 2

t 4
3

6 6
5

4

9
8

7
6

5

Figure: A disjoint 3-collection s and its embedding as a disjoint
5-collection. On the left w0(s) = 720t and on the right
w2(µ(s)) = 261,273,600t = 9!⇥720t.
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Collections with two flat steps VI

So we only need to consider those paths in X2
m+1 that are not

µ-embeddings of paths from X2
m�1, that is,

N00(0)�d!D00(0) = t�2 Â
s2X2

m+1\µ(X2
m�1)

w2(s).
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Collections with two flat steps VII

There are four disjoint cases:
The first flat step at height p1 = 1 and the second flat step is at
height p2 where 2  p2  m+1.
The first flat step is at height p1 � 2. The second flat step is at
height p2 = m and we either have a M-path or an asymmetric
M-path above p2.
The first flat step is at height p1 � 2. The second flat step is at
height p2 = m+1.
The two flat steps are at heights between 2 and m�1 but with no
V-paths above height p2.
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Collections with two flat steps VIII

Actually we need to multiply the number of cases above by two
because we need to consider case where the two flat steps are
centered (s ) and the case where the second flat step is offset to
the left (L).
Don’t need to consider the right offset case by symmetry.
But actually it turns out that the total weights for both cases is the
same! So we only need to consider the s case.
After a lot of simplifying, we get...

Stephen Shang Yi Liu (CWRU) Magnitude of odd-dimensional Euclidean balls March 19, 2020 62 / 71



Partial results I
Let d = 2m+1 be odd and Bd

2 be the closed d-dimensional Euclidean
ball. Then

d2

dt2
Mag(tBd

2)
�

�
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Partial results II
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Figure: Second order terms computed for odd dimensions from 3 to 41 along
with the values as predicted by the erstwhile convex magnitude conjecture.
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Future work

Continue trying to simplify the long expression for the second
derivative term (skip factorials, Catalan numbers,...)
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Questions?



Thank you for listening!
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