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Abstract

We should think about adjunctions as an interesting comparison of
two categories that is somewhat more general and of a different nature
than an equivalence of categories. Following [Lei14], we’ll be looking
at three different ways of understanding adjoint functors and showing
that they are equivalent.

Hom-Set Definition

Definition (Adjoint Functors). Given a pair of functors F : A → B and
G : B → A , we say F is left adjoint to G, and G right adjoint to F , written
F a G if there is a natural isomorphism tA,B : B(F (A), B) → A (A,G(B))
for each A in A and B in B. An adjunction between F and G is a choice
of natural isomorphism tA,B.

So this means for each g : F (A) → B, we have a map tA,B(g) : A →
G(B). We shall call this isomorphism the transpose of g (Leinster denotes
this g) and this process ”transposing” g. Similarly, for each f : A→ G(B),
we have a map t−1A,B(f) : F (A)→ B.

Naturality

Let’s take a closer look at what naturality means. In words it would mean
that the transpose of a composition of two maps is equal to the composition
of the transpose of the two maps. We have four options here:

1. naturality of t with respect to A

2. naturality of t−1 with respect to F (A)

3. naturality of t−1 with respect to B
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4. and finally naturality of t with respect to G(B).

Let’s first take a look at naturality of t with respect to A:
We have the following data (left), and applying tA′,B on g ◦ Ff and on

them separately we get the commutative triangle on the right:

A′ F (A′)

A F (A)

B

A′ A

G(B)
��

f

��

Ff

��

g

� //

� //

� //

//
f

��

tA,B(g)

��
tA′,B(g ◦ Ff)

So tA′,B(g ◦ F (f)) = tA,B(g) ◦ f (here tA′,F (A)(F (f)) = f).
Similarly for 2, 3, and 4, we have the following data yielding the following

commutative triangles:
naturality of t−1 with respect to F (A):
We begin with the map Ff : F (A′) → F (A), and taking the preimage,

we get the following data and corresponding commutative triangle:
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A′ F (A′)

A F (A)

G(B)

F (A′) F (A)

B
��

f

��

Ff

��

g

� //

� //

� //

//
Ff

��

t−1A,B(g)

��
t−1A′,B(g ◦ f)

So t−1A′,B(g ◦ f) = t−1A,B(g) ◦ Ff .

naturality of t−1 with respect to B:

A

B G(B)

B′ G(B′)

F (A) B

B′
��

f

��

Gg

��

g

� //

� //

� //

//
t−1A,B(f)

��

g

��
t−1A,B′(Gg ◦ f)

So t−1A,B′(Gg ◦ f) = g ◦ t−1A,B(f).
Finally, naturality of t with respect to G(B):
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F (A)

B G(B)

B′ G(B′)

A G(B)

G(B′)
��

f

��

Gg

��

g

� //

� //

� //

//
tA,B(f)

��

Gg

��
tA,B′(g ◦ f)

So tA,B′(g ◦ f) = Gg ◦ tA,B(f).
We call this understanding of adjoint functors the Hom-Set Definition

because the important bit here is this isomorphism between the Hom-Sets
of A and B.

There are a whole class of examples of adjoint functors that are the
forgetful and free functors between algebraic theories. We’ll be looking at
one of these:

Example (Abelianization of Groups). There is an adjunction

Ab

Grp
��

Ua

OO

F

where U is the forgetful inclusion functor from the category of abelian
groups to the category of groups, and F is the free functor from the category
of groups to the category of abelian groups. For a group G in Grp, F (G)
is the abelianization of the group G, or G/G′ where G′ is the commutator
subgroup of G (see my writeup at [Liu18] for details). This abelianization
gives rise to the universal property that for any group homomorphism φ out
of G to an abelian group A, there is a unique φ : G/G′ → A such that
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φ = φ ◦ π where π is the canonical quotient map from G to G/G′. This
universal property is what allows us to specify what tG,A : Ab(F (G), A)→
Grp(G,U(A)) should do: tG,A(φ) = φ ◦ π = φ, and t−1G,A(φ) = φ.

Units and Counits Definition

Definition (Unit and Counit of an Adjunction). Given A ∈ A and the iden-
tity map 1F (A), tA,F (A)(1F (A)) defines the isomorphism ηA : A → GF (A).

Similarly, given B ∈ B and the identity map 1G(B), t
−1
G(B),B(1G(B)) defines

the isomorphism εB : FG(B)→ B. Together, ηA and εB define the natural
transformations

η : 1A → G ◦ F, ε : F ◦G→ 1B

called the unit and counit of the adjunction, respectively.

We have important triangle identities associated with the unit and counit.

Proposition 1 (Triangle Identities). Given an adjunction F a G with unit
η and counit ε, the triangles

F FGF

F

G GFG

G

//
Fη

��

εF

��

1F

//
ηG

��

Gε

��

1G

commute.

Proof. We prove the equivalent statement that the triangles

F (A) FGF (A)

F (A)

G(B) GFG(B)

G(B)

//
F (ηA)

��

εF (A)

��

1F (A)

//
ηG(B)

��

G(εB)

��

1G(B)
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commute for all A ∈ A and B ∈ B.
For the triangle on the left, we use naturality of t−1 with respect to F (A)

that we explained above where we replace f with ηA and g with 1GF (A). So
we have the following data giving rise to the commutative triangle on the
right:

A F (A)

GF (A) FGF (A)

GF (A)

F (A) FGF (A)

F (A)
��

ηA

��

F (ηA)

��

1GF (A)

� //

� //

� //

//
F (ηA)

��

t−1GF (A),F (A)(1GF (A))

��t−1A,F (A)(1GF (A) ◦ ηA)

Now by definition t−1GF (A),F (A)(1GF (A)) = εF (A), and t−1A,F (A)(1GF (A) ◦ ηA) =

t−1A,F (A)(ηA) and by definition, tA,F (A)(1F (A)) = ηA, so t−1A,F (A)(ηA) = 1F (A).

So from the triangle we get 1F (A) = εF (A) ◦F (ηA), proving the commutative
triangle.

Similarly, for the triangle on the right, we use naturality of t with respect
to G(B) that we explained above where we replace f with 1FG(B) and g
with εB. So we from the resulting commutative triangle we have

tG(B),B(εB ◦ 1FG(B)) = G(εB) ◦ tG(B),FG(B)(1FG(B)).

And again, by definition tG(B),FG(B)(1FG(B)) = ηG(B) and tG(B),B(εB ◦
1FG(B)) = tG(B),B(εB) = 1G(B), so 1G(B) = GεB◦ηG(B), proving the identity.

It turns out the unit and counit determine the whole adjunction.

Proposition 2. Given an adjunction tA,B : B(F (A), B) → A (A,G(B))
for any g : F (A) → B, tA,B(g) = Gg ◦ ηA, and for any f : A → G(B),
t−1A,B(f) = εB ◦ Ff .
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Proof. For any g : F (A)→ B, by naturality, tA,B(g) = tA,B(g◦1F (A)) which
by naturality of t with respect to GF (A), is equal to Gg ◦ ηA. Similarly, for
any f : A → G(B), t−1A,B(f) = t−1A,B(1G(B) ◦ f) which by naturality of t−1

with respect to FG(B), is equal to εB ◦ Ff .

Using this fact, we can equivalently define adjunctions by specifying pairs
of units and counits.

Theorem 1. Given functors F : A → B, G : B → A , there is a bijection
between adjunctions F a G and pairs of units and counits (η, ε) that satisfy
the triangle identities.

Proof. We have already shown that given an adjunction t, we can define
natural transformations η, ε that satisfy the triangle identites. Now, we
just need to show that given unit and counit η, ε, we can uniquely define a
natural isomorphism tA,B : B(F (A), B) → A (A,G(B)) for all A ∈ A , for
all B ∈ B.

Given g : F (A)→ B, define tA,B(g) = Gg ◦ηA, and given f : A→ G(B),
define t−1A,B(f) = εB ◦ Ff . We need to show that t and t−1 are well-defined,
mutually inverse, natural, and that η, ε are in fact their unit and counit.

Well-Defined Let g : F (A) → B, h : F (A) → B with g = h. Since G is
well-defined, tA,B(g) = Gg ◦ ηA = Gh ◦ ηA = tA,B(h), so t is well-defined.
Similarly for t−1.

Isomorphism Let g : F (A) → B. Need to show that t−1A,B(tA,B(g)) = g.
Now by the definition of t and functoriality of F :

t−1A,B(tA,B(g)) = t−1A,B(Gg ◦ ηA)

= εB ◦ F (Gg ◦ ηA)

= εB ◦ FGg ◦ F (ηA)

So we have the diagram

F (A) FGF (A) FG(B)

B

//
F (ηA)

//
FG(g)

��

εB
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However, by naturality of ε with respect to the map g, we can add the
following naturality square:

F (A) FGF (A) FG(B)

BF (A)

//
F (ηA)

//
FG(g)

��

εB

��

εF (A)

//
g

And finally we have the triangle identity, so we can finally add:

F (A) FGF (A) FG(B)

BF (A)

//
F (ηA)

//
FG(g)

��

εB

��

εF (A)

//
g

��

1F (A)

So by commutativity of the diagram, εB ◦ FGg ◦ F (ηA) = g ◦ 1F (A) = g.

Let f : A → G(B). We also need to show tA,B(t−1A,B(f)) = f . Again by
our definition of t and functoriality of G, we have

tA,B(t−1A,B(f)) = tA,B(εA ◦ Ff)

= G(εB ◦ Ff) ◦ ηA
= G(εB) ◦GFf ◦ ηA

Again we have the diagram

A

GF (A) GFG(B) G(B)
OO

ηA

//
GFf

//
εB
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which again, because of naturality of η with respect to the map f and
the triangle identity, we have

A

GF (A) GFG(B) G(B)

G(B)

OO

ηA

//
GFf

//
εB

//

f

OO

ηG(B)

??

1G(B)

So indeed G(εB) ◦GFf ◦ ηA = 1G(B) ◦ f = f .
Naturality Now we will show that t is natural in A and that t−1 is natural

in B. First we have the following data:

A′ F (A′)

A F (A)

B

��

f

��

Ff

��

g

� //

� //

� //

and by definition tA′,B(g ◦Ff) = G(g ◦Ff)◦ηA′ = Gg ◦GFf ◦ηA′ . We want
to show that this equals Gg ◦ ηA ◦ f = tA,B(g) ◦ f . From Gg ◦GFf ◦ ηA′ we
have the following diagram:

A′

GF (A′) GF (A) G(B)
OO

ηA′

//
GFf

//
Gg
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but by naturality of η with respect to the map f , we can add the naturality
square:

A′

GF (A′) GF (A) G(B)

A

OO

ηA′

//
GFf

//
Gg

//

f

OO

ηA

So Gg ◦GFf ◦ ηA′ = Gg ◦ ηA ◦ f = tA,B(g) ◦ f , so t is natural in A.
For naturality of t−1 in B, we have the following data:

A

B G(B)

B′ G(B′)

��

f

��

Gg

��

g

� //

� //

� //

and again by definition of t−1 and functoriality of F , we have t−1A,B′(Gg◦f) =
εB′ ◦ F (Gg ◦ f) = εB′ ◦ FGg ◦ Ff . We want to show that this is equal to
g ◦ εB ◦ Ff . From εB′ ◦ FGg ◦ Ff we have the following diagram:

F (A) FG(B) FG(B′)

B′

//
Ff

//
FGg

��

εB′
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but again by naturality of ε with respect to the map g, we can add the
naturality square:

F (A) FG(B) FG(B′)

B′B

//
Ff

//
FGg

��

εB′

��

εB

//
g

So indeed εB′ ◦ FGg ◦ Ff = g ◦ εB ◦ Ff .
Inverse We finally need to show that this process of corresponding be-

tween t and (η, ε) is mutually inverse.
We began with the adjunction t : B(F (−),−)) → A (−, G(−)) and

from it we derived the unit and counit of the adjunction, namely that ηA =
tA,FA(1FA) and εB = t−1GB,B(1GB). So this process defines a mapping t 7→
(ηt, εt). Let’s call this mapping Γ, that is, Γ(t) = (ηt, εt). Going the other
way we showed that the unit and counit determine the whole adjunction,
meaning that for any g : FA → B, tA,B(g) = Gg ◦ ηA and for any f : A →
GB, t−1A,B(f) = εB ◦ Ff . So we have a mapping (η, ε) 7→ s. Notice that
this unit and counit pair are not necessarily the same ones derived from the
adjunction t, and the resulting adjunction from this pair is not necessarily
the same as before. Something else to note is that technically from η we get
the adjunction s, while ε would give us s−1. But we’re just going to worry
about s for now. Let’s call this mapping ∆, that is, ∆(η, ε) = s. The goal
is to then show that ∆(Γ(t)) = t and Γ(∆(η, ε)) = (η, ε).

First we show ∆(Γ(t)) = t. Now I’m fudging with the notation a little
bit here, but for all A and B, Γ(tA,B) = (tA,FA(1FA), t−1GB,B(1GB)). And

∆(tA,FA(1FA), t−1GB,B(1GB)) = Gg ◦ tA,FA(1FA) for any g : FA→ B (Notice

we threw away t−1 here, like we noted above). Now by naturality of t,
Gg ◦ tA,FA(1FA) = tA,B(g ◦ 1FA) = tA,B(g). (The same thing happens to
t−1 by naturality). So indeed ∆(Γ(t)) = t.

Finally we show Γ(∆(η, ε)) = (η, ε). Now again, not worrying partic-
ularly about inverses and fudging with the notation, we have ∆(η, ε)) =
G(−) ◦ ηA. And Γ(G(−) ◦ ηA) = G1FA ◦ ηA = 1GFA ◦ ηA = ηA. A similar
thing happens with εB ◦ F (−). So in fact Γ(∆(η, ε)) = (η, ε).

So the processes are mutually inverse, concluding the proof.
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