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Abstract

We should think about adjunctions as an interesting comparison of
two categories that is somewhat more general and of a different nature
than an equivalence of categories. Following [Leil4], we’ll be looking
at three different ways of understanding adjoint functors and showing
that they are equivalent.

Hom-Set Definition

Definition (Adjoint Functors). Given a pair of functors F : &/ — % and
G: B — o, wesay F is left adjoint to GG, and G right adjoint to F', written
F — G if there is a natural isomorphism t4 p : Z(F(A), B) — </ (A, G(B))
for each A in &/ and B in #. An adjunction between F' and G is a choice
of natural isomorphism ¢4 g.

So this means for each g : F(A) — B, we have a map t4p(g9) : A —
G(B). We shall call this isomorphism the transpose of g (Leinster denotes
this g) and this process ”transposing” g. Similarly, for each f: A — G(B),
we have a map t,'5(f) : F(A) — B.

Naturality

Let’s take a closer look at what naturality means. In words it would mean
that the transpose of a composition of two maps is equal to the composition
of the transpose of the two maps. We have four options here:

1. naturality of ¢ with respect to A
2. naturality of t~! with respect to F(A)

3. naturality of t~! with respect to B



4. and finally naturality of ¢ with respect to G(B).

Let’s first take a look at naturality of t with respect to A:
We have the following data (left), and applying 4 p on g o F f and on
them separately we get the commutative triangle on the right:

A= F(A) A / A
f|—— |Ff ta,B(g)
targ(go Ff)
A————=F(A) G(B)
g
B

Sotap(go F(f)) =tan(g)o f (here ta pay(F(f)) = f).

Similarly for 2, 3, and 4, we have the following data yielding the following
commutative triangles:

naturality of t=1 with respect to F(A):

We begin with the map Ff : F(A") — F(A), and taking the preimage,
we get the following data and corresponding commutative triangle:



A= F(A) F(A)
[l |Ff ta.5(9)

Ar——>F(A) B

G(B)

So t;,l’B(g of)= t;LlB(g) oFf.
naturality of t=1 with respect to B:

A F(A)

B+—>G(B) B’

9| ———~ |Gy

B +—— > G(B/)

So t;}B,(Gg of)=go t;LlB(f).
Finally, naturality of t with respect to G(B):



F(A) ta,(f) G(B)
f Gy
tap(gof)

B G(B)

Sotap(gof)=Ggotan(f)

We call this understanding of adjoint functors the Hom-Set Definition
because the important bit here is this isomorphism between the Hom-Sets
of &/ and A.

There are a whole class of examples of adjoint functors that are the
forgetful and free functors between algebraic theories. We’ll be looking at
one of these:

Example (Abelianization of Groups). There is an adjunction

Ab

Grp

where U is the forgetful inclusion functor from the category of abelian
groups to the category of groups, and F is the free functor from the category
of groups to the category of abelian groups. For a group G in Grp, F(G)
is the abelianization of the group G, or G/G’ where G’ is the commutator
subgroup of G (see my writeup at [Liul§| for details). This abelianization
gives rise to the universal property that for any group homomorphism ¢ out
of G to an abelian group A, there is a unique ¢ : G/G’ — A such that



¢ = ¢ om where 7 is the canonical quotient map from G to G/G’. This
universal property is what allows us to specify what tg 4 : Ab(F(G),A) —

Grp(G,U(A)) should do: tg a(¢) = ¢pom = ¢, and t(_;}A(qﬁ) = ¢.

Units and Counits Definition

Definition (Unit and Counit of an Adjunction). Given A € &/ and the iden-
tity map 1p(a), ta,r(a)(1pea)) defines the isomorphism n4 : A — GF(A).
Similarly, given B € % and the identity map lg(p), ta%B),B(lG(B)) defines
the isomorphism ep : FG(B) — B. Together, n4 and ep define the natural
transformations

n:ly - GoF, e:FolG—1yg
called the unit and counit of the adjunction, respectively.
We have important triangle identities associated with the unit and counit.
Proposition 1 (Triangle Identities). Given an adjunction F 4 G with unit

n and counit €, the triangles

F G
1 FGF G 7

GFG

el Ge

commute.
Proof. We prove the equivalent statement that the triangles

F(na) NG (B)
FGF(A) G(B)

F(A) GFG(B)



commute for all A € o/ and B € 4.

For the triangle on the left, we use naturality of t=' with respect to F(A)
that we explained above where we replace f with n4 and g with 1gp(4). So
we have the following data giving rise to the commutative triangle on the

right:
F(na)
A———>F(A) F(A) FGF(A)
na| —————  |F(na) tara,raLara)
tj,lp(A) (Igray ©na)

GF(A) > FGF(A) F(A)
lara)

GF(A)

Now by definition tg’lF(A),F(A)(]‘GF(A)) = SF(A), and t;l,lF(A)(lGF(A) o ’I’]A) =
t;x,lF(A)(nA) and by definition, t 4 r(4)(1pc4)) = N4, 50 tZ,lF(A) (na) = 1pa)-
So from the triangle we get 14y = €p(4)© F'(14), proving the commutative
triangle.

Similarly, for the triangle on the right, we use naturality of t with respect
to G(B) that we explained above where we replace f with 1pg(p) and g
with €. So we from the resulting commutative triangle we have

tam),B(eB ° lpa(py) = G(eB) o ta(n),raB)(lras))-

And again, by definition t¢(p) ra(s)(1ra(B)) = Nap) and tgm)p(ep ©
].FG(B)) = tG’(B),B(eB) = 1G(B)a SO 1G(B) = Gep oNG(B)s proving the identity.
O

It turns out the unit and counit determine the whole adjunction.

Proposition 2. Given an adjunction tap : B(F(A),B) — /(A G(B))
for any g : F(A) — B, tap(9) = Ggona, and for any f : A — G(B),
tap(f) =epoFf.



Proof. For any g : F(A) — B, by naturality, ta p(g9) = ta,58(g901p(4)) which
by naturality of ¢ with respect to GF(A), is equal to Ggony. Similarly, for
any f: A — G(B), tZ}B(f) = tZ}B(lg(B) o f) which by naturality of ¢!
with respect to FG(B), is equal to eg o F'f. O

Using this fact, we can equivalently define adjunctions by specifying pairs
of units and counits.

Theorem 1. Given functors F : of — B, G : B — o, there is a bijection
between adjunctions F' 4 G and pairs of units and counits (n,e) that satisfy
the triangle identities.

Proof. We have already shown that given an adjunction ¢, we can define
natural transformations 7,e that satisfy the triangle identites. Now, we
just need to show that given unit and counit 7, e, we can uniquely define a
natural isomorphism t4 g : B(F(A),B) — &/ (A,G(B)) for all A € o7, for
all B € A.

Given g : F(A) — B, define t4 p(g) = Ggona, and given f : A — G(B),
define tZ,lB( f) =epo Ff. We need to show that ¢ and ¢! are well-defined,
mutually inverse, natural, and that 7, ¢ are in fact their unit and counit.

Well-Defined Let g : F(A) — B, h : F(A) — B with g = h. Since G is
well-defined, t4 g(g) = Ggona = Ghonyg =ty p(h), so t is well-defined.
Similarly for ¢~ 1.

Isomorphism Let g : F(A) — B. Need to show that ¢, (ta 5(g)) = g.
Now by the definition of ¢ and functoriality of F" ’

tap(tan(9) =t4'5(Ggona)
=epoF(Ggony)
=epo FGgo F(na)

So we have the diagram

€B



However, by naturality of ¢ with respect to the map ¢, we can add the
following naturality square:

F(na) FG(g)
F(A) FGF(A) FG(B)
EF(A) EB
F(A) B
g
And finally we have the triangle identity, so we can finally add:
F(na) FG(g)
(A) FGF(A) FG(B)
EF(A) EB
1r(a)
F(A) B
g

So by commutativity of the diagram, ep o F'Ggo F(na) = golpa) = g.
Let f: A — G(B). We also need to show t4 p(t;'5(f)) = f. Again by
our definition of ¢ and functoriality of G, we have

tap(tyg(f) =tanleacFf)
=G(epoFf)ona
=G(ep)oGFfony
Again we have the diagram

GFf €B

GF(A) GFG(B)

G(B)

na



which again, because of naturality of n with respect to the map f and
the triangle identity, we have

GFf €B
GF(A) GFG(B) G(B)
la(s)
nA Na(B)
A G(B)
/

So indeed G(ep) o GF fona=1gmof =T
Naturality Now we will show that ¢ is natural in A and that ¢t~ is natural
in B. First we have the following data:

A F(A)

[l |Ff

Ar——— F(4)

B

and by definition t 4 g(go F f) = G(go F f)ona = GgoGF fony . We want
to show that this equals Ggonao f =tap(g)o f. From Ggo GF f ony we
have the following diagram:

GFf Gy

GF(A) GF(A)

G(B)

na
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but by naturality of  with respect to the map f, we can add the naturality
square:

GFf Gy

GF (A GF(A)

G(B)

nAr TA

A A

f

So GgoGFfona =Ggonao f=tap(g)of,sotisnatural in A.
For naturality of t~! in B, we have the following data:

A

B—>G(B)

g ——~ |Gy

B'—G(B)

and again by definition of ¢~! and functoriality of F, we have t;lB, (Ggof) =
eg o F(Ggo f) =ep o FGgo Ff. We want to show that this is equal to
goepo Ff. From epg o FGg o F' f we have the following diagram:

Ff FGg
FG(B)

F(A) FG(B)

Ep/

B/
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but again by naturality of ¢ with respect to the map g, we can add the
naturality square:

Ff FGg
F(A) FG(B) FG(B')
€B ER
g
B B’

So indeed egr 0o FGgo F'f =goepo F'f.

Inverse We finally need to show that this process of corresponding be-
tween ¢ and (n,¢) is mutually inverse.

We began with the adjunction ¢t : Z(F(-),—)) — <« (—,G(—)) and
from it we derived the unit and counit of the adjunction, namely that n4 =
tara(lpa) and ep = té}&B(lGB). So this process defines a mapping t —
(nt,e!). Let’s call this mapping T, that is, T'(t) = (n%,&'). Going the other
way we showed that the unit and counit determine the whole adjunction,
meaning that for any g : FA — B, t4p(g9) = Ggona and for any f: A —
GB, t;lB(f) = epo Ff. So we have a mapping (7,e) — s. Notice that
this unit and counit pair are not necessarily the same ones derived from the
adjunction ¢, and the resulting adjunction from this pair is not necessarily
the same as before. Something else to note is that technically from n we get
the adjunction s, while ¢ would give us s~!. But we’re just going to worry
about s for now. Let’s call this mapping A, that is, A(n,e) = s. The goal
is to then show that A(I'(t)) = ¢ and I'(A(n,¢)) = (n, ).

First we show A(I'(t)) = t. Now I'm fudging with the notation a little
bit here, but for all A and B, T'(tas) = (tara(lra),tgp z(1es)). And

A(tA,FA(lFA)at(_;lB7B(1GB)) = GgOtAVFA(lpA) for any g : FA—- B (Notice
we threw away ¢~! here, like we noted above). Now by naturality of ¢,
Ggotara(lpa) =tap(golpa) = tap(g). (The same thing happens to
t~! by naturality). So indeed A(T(t)) = t.

Finally we show I'(A(n,e)) = (n,¢). Now again, not worrying partic-
ularly about inverses and fudging with the notation, we have A(n,e)) =
G(=)ona. And T'(G(—=)ona) = Glpaona = lgraona = na. A similar
thing happens with ep o F'(—). So in fact I'(A(n,¢)) = (n, ).

So the processes are mutually inverse, concluding the proof. O
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